Skip to main content
Log in

Recent progress on printable power supply devices and systems with nanomaterials

  • Review Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

In recent years, tremendous research interest has been triggered in the fields of flexible, wearable and miniaturized power supply devices and self-powered energy sources, in which energy harvesting/conversion devices are integrated with energy storage devices into an infinitely self-powered energy system. As opposed to conventional fabrication methods, printing techniques hold promising potency for fabrication of power supply devices with practical scalability and versatility, especially for applications in wearable and portable electronics. To further enhance the performance of the as-fabricated devices, the utilization of nanomaterials is one of the promising strategies, owing to their unique properties. In this review, an overview on the progress of printable strategies to revolutionize the fabrication of power supply devices and integrated system with attractive form factors is provided. The advantages and limitations of the commonly adopted printing techniques for power supply device fabrication are first summarized. Thereafter, the research progress on novel developed printable energy harvesting and conversion devices, including solar cells, nanogenerators and biofuel cells, and the research advances on printable energy storage devices, namely, supercapacitors and rechargeable batteries, are presented, respectively. Although exciting advances on printable material modification, innovative fabrication methods and device performance improvement have been witnessed, there are still several challenges to be addressed to realize fully printable fabrication of integrated self-powered energy sources.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Gao, W.; Emaminejad, S.; Nyein, H. Y. Y.; Challa, S.; Chen, K.; Peck, A.; Fahad, H. M.; Ota, H.; Shiraki, H.; Kiriya, D. et al. Fully integrated wearable sensor arrays for multiplexed in situ perspiration analysis. Nature 2016, 529, 509–514.

    Article  CAS  Google Scholar 

  2. Jia, W. Z.; Wang, X.; Imani, S.; Bandodkar, A. J.; Ramírez, J.; Mercier, P. P.; Wang, J. Wearable textile biofuel cells for powering electronics. J. Mater. Chem. A 2014, 2, 18184–18189.

    Article  CAS  Google Scholar 

  3. Honda, W.; Harada, S.; Arie, T.; Akita, S.; Takei, K. Wearable, human-interactive, health-monitoring, wireless devices fabricated by macroscale printing techniques. Adv. Funct. Mater. 2014, 24, 3299–3304.

    Article  CAS  Google Scholar 

  4. Son, D.; Lee, J.; Qiao, S. T.; Ghaffari, R.; Kim, J.; Lee, J. E.; Song, C.; Kim, S. J.; Lee, D. J.; Jun, S. W. et al. Multifunctional wearable devices for diagnosis and therapy of movement disorders. Nat. Nanotechnol. 2014, 9, 397–404.

    Article  CAS  Google Scholar 

  5. Wang, Z. L.; Song, J. H. Piezoelectric nanogenerators based on zinc oxide nanowire arrays. Science 2006, 312, 242–246.

    Article  CAS  Google Scholar 

  6. Kim, J.; Kumar, R.; Bandodkar, A. J.; Wang, J. Advanced materials for printed wearable electrochemical devices: A review. Adv. Electron. Mater. 2017, 3, 1600260.

    Article  CAS  Google Scholar 

  7. Wang, Z. L. Towards self-powered nanosystems: From nanogenerators to nanopiezotronics. Adv. Funct. Mater. 2008, 18, 3553–3567.

    Article  CAS  Google Scholar 

  8. Leung, S. F.; Tsui, K. H.; Lin, Q. F.; Huang, H. T.; Lu, L. F.; Shieh, J. M.; Shen, C. H.; Hsu, C. H.; Zhang, Q. P.; Li, D. D. et al. Large scale, flexible and three-dimensional quasi-ordered aluminum nanospikes for thin film photovoltaics with omnidirectional light trapping and optimized electrical design. Energy Environ. Sci. 2014, 7, 3611–3616.

    Article  CAS  Google Scholar 

  9. Lin, Q. F.; Lu, L. F.; Tavakoli, M. M.; Zhang, C.; Lui, G. C.; Chen, Z.; Chen, X. Y.; Tang, L.; Zhang, D. Q.; Lin, Y. J. et al. High performance thin film solar cells on plastic substrates with nanostructure-enhanced flexibility. Nano Energy 2016, 22, 539–547.

    Article  CAS  Google Scholar 

  10. Fan, F. R.; Tian, Z. Q.; Wang, Z. L. Flexible triboelectric generator. Nano Energy 2012, 1, 328–334.

    Article  CAS  Google Scholar 

  11. Sakai, H.; Nakagawa, T.; Tokita, Y.; Hatazawa, T.; Ikeda, T.; Tsujimura, S.; Kano, K. A high-power glucose/oxygen biofuel cell operating under quiescent conditions. Energy Environ. Sci. 2009, 2, 133–138.

    Article  CAS  Google Scholar 

  12. Jia, W. Z.; Valdés-Ramírez, G.; Bandodkar, A. J.; Windmiller, J. R.; Wang, J. Epidermal biofuel cells: Energy harvesting from human perspiration. Angew. Chem., Int. Ed. 2013, 52, 7233–7236.

    Article  CAS  Google Scholar 

  13. Um, H. D.; Choi, K. H.; Hwang, I.; Kim, S. H.; Seo, K.; Lee, S. Y. Monolithically integrated, photo-rechargeable portable power sources based on miniaturized Si solar cells and printed solid-state lithium-ion batteries. Energy Environ. Sci. 2017, 10, 931–940.

    Article  CAS  Google Scholar 

  14. Liu, R. Y.; Liu, Y. Q.; Zou, H. Y.; Song, T.; Sun, B. Q. Integrated solar capacitors for energy conversion and storage. Nano Res. 2017, 10, 1545–1559.

    Article  CAS  Google Scholar 

  15. Kyeremateng, N. A.; Brousse, T.; Pech, D. Microsupercapacitors as miniaturized energy-storage components for on-chip electronics. Nat. Nanotechnol. 2017, 12, 7–15.

    Article  CAS  Google Scholar 

  16. Pech, D.; Brunet, M.; Taberna, P. L.; Simon, P.; Fabre, N.; Mesnilgrente, F.; Conédéra, V.; Durou, H. Elaboration of a microstructured inkjet-printed carbon electrochemical capacitor. J. Power Sources 2010, 195, 1266–1269.

    Article  CAS  Google Scholar 

  17. Gu, L. L.; Tavakoli, M. M.; Zhang, D. Q.; Zhang, Q. P.; Waleed, A.; Xiao, Y. Q.; Tsui, K. H.; Lin, Y. J.; Liao, L.; Wang, J. N. et al. 3D arrays of 1024-pixel image sensors based on lead halide perovskite nanowires. Adv. Mater. 2016, 28, 9713–9721.

    Article  CAS  Google Scholar 

  18. Lin, Q. F.; Sarkar, D.; Lin, Y. J.; Yeung, M.; Blankemeier, L.; Hazra, J.; Wang, W.; Niu, S. Y.; Ravichandran, J.; Fan, Z. Y. et al. Scalable indium phosphide thin-film nanophotonics platform for photovoltaic and photoelectrochemical devices. ACS Nano 2017, 11, 5113–5119.

    Article  CAS  Google Scholar 

  19. Gao, Y.; Jin, H. Y.; Lin, Q. F.; Li, X.; Tavakoli, M. M.; Leung, S. F.; Tang, W. M.; Zhou, L. M.; Chan, H. L. W.; Fan, Z. Y. Highly flexible and transferable supercapacitors with ordered three-dimensional MnO2/Au/MnO2 nanospike arrays. J. Mater. Chem. A 2015, 3, 10199–10204.

    Article  CAS  Google Scholar 

  20. Fan, Z. Y.; Ruebusch, D. J.; Rathore, A. A.; Kapadia, R.; Ergen, O.; Leu, P. W.; Javey, A. Challenges and prospects of nanopillar-based solar cells. Nano Res. 2009, 2, 829–843.

    Article  Google Scholar 

  21. Cao, X.; Chen, H. T.; Gu, X. F.; Liu, B. L.; Wang, W. L.; Cao, Y.; Wu, F. Q.; Zhou, C. W. Screen printing as a scalable and low-cost approach for rigid and flexible thin-film transistors using separated carbon nanotubes. ACS Nano 2014, 8, 12769–12776.

    Article  CAS  Google Scholar 

  22. Singh, M.; Haverinen, H. M.; Dhagat, P.; Jabbour, G. E. Inkjet printing—Process and its applications. Adv. Mater. 2010, 22, 673–685.

    Article  CAS  Google Scholar 

  23. Li, L.; Wu, Z.; Yuan, S.; Zhang, X. B. Advances and challenges for flexible energy storage and conversion devices and systems. Energy Environ. Sci. 2014, 7, 2101–2122.

    Article  CAS  Google Scholar 

  24. Yu, X.; Marks, T. J.; Facchetti, A. Metal oxides for optoelectronic applications. Nat. Mater. 2016, 15, 383–396.

    Article  CAS  Google Scholar 

  25. Beidaghi, M.; Gogotsi, Y. Capacitive energy storage in micro-scale devices: Recent advances in design and fabrication of micro-supercapacitors. Energy Environ. Sci. 2014, 7, 867–884.

    Article  CAS  Google Scholar 

  26. Zhu, C.; Liu, T. Y.; Qian, F.; Chen, W.; Chandrasekaran, S.; Yao, B.; Song, Y.; Duoss, E. B.; Kuntz, J. D.; Spadaccini, C. M. et al. 3D printed functional nanomaterials for electrochemical energy storage. Nano Today 2017, 15, 107–120.

    Article  CAS  Google Scholar 

  27. Zhang, F.; Wei, M.; Viswanathan, V. V.; Swart, B.; Shao, Y. Y.; Wu, G.; Zhou, C. 3D printing technologies for electrochemical energy storage. Nano Energy 2017, 40, 418–431.

    Article  CAS  Google Scholar 

  28. Noh, Y. Y.; Zhao, N.; Caironi, M.; Sirringhaus, H. Downscaling of self-aligned, all-printed polymer thin-film transistors. Nat. Nanotechnol. 2007, 2, 784–789.

    Article  CAS  Google Scholar 

  29. Sirringhaus, H.; Kawase, T.; Friend, R. H.; Shimoda, T.; Inbasekaran, M.; Wu, W.; Woo, E. P. High-resolution inkjet printing of all-polymer transistor circuits. Science 2000, 290, 2123–2126.

    Article  CAS  Google Scholar 

  30. Sekitani, T.; Noguchi, Y.; Zschieschang, U.; Klauk, H.; Someya, T. Organic transistors manufactured using inkjet technology with subfemtoliter accuracy. Proc. Natl. Acad. Sci. USA 2008, 105, 4976–4980.

    Article  Google Scholar 

  31. Torrisi, F.; Hasan, T.; Wu, W. P.; Sun, Z. P.; Lombardo, A.; Kulmala, T. S.; Hsieh, G.; Jung, S.; Bonaccorso, F.; Paul, P. J. et al. Inkjet-printed graphene electronics. ACS Nano 2012, 6, 2992–3006.

    Article  CAS  Google Scholar 

  32. Azzellino, G.; Grimoldi, A.; Binda, M.; Caironi, M.; Natali, D.; Sampietro, M. Fully inkjet-printed organic photodetectors with high quantum yield. Adv. Mater. 2013, 25, 6829–6833.

    Article  CAS  Google Scholar 

  33. Liu, X.; Gu, L. L.; Zhang, Q. P.; Wu, J. Y.; Long, Y. Z.; Fan, Z. Y. All-printable band-edge modulated ZnO nanowire photodetectors with ultra-high detectivity. Nat. Commun. 2014, 5, 4007.

    Article  CAS  Google Scholar 

  34. Ota, H.; Chao, M. H.; Gao, Y. J.; Wu, E.; Tai, L. C.; Chen, K.; Matsuoka, Y.; Iwai, K.; Fahad, H. M.; Gao, W. et al. 3D printed “Earable” smart devices for real-time detection of core body temperature. ACS Sens. 2017, 2, 990–997.

    Article  CAS  Google Scholar 

  35. Rim, Y. S.; Bae, S. H.; Chen, H. J.; De Marco, N.; Yang, Y. Recent progress in materials and devices toward printable and flexible sensors. Adv. Mater. 2016, 28, 4415–4440.

    Article  CAS  Google Scholar 

  36. Chen, K.; Gao, W.; Emaminejad, S.; Kiriya, D.; Ota, H.; Nyein, H. Y. Y.; Takei, K.; Javey, A. Printed carbon nanotube electronics and sensor systems. Adv. Mater. 2016, 28, 4397–4414.

    Article  CAS  Google Scholar 

  37. Dua, V.; Surwade, S. P.; Ammu, S.; Agnihotra, S. R.; Jain, S.; Roberts, K. E.; Park, S.; Ruoff, R. S.; Manohar, S. K. Allorganic vapor sensor using inkjet-printed reduced graphene oxide. Angew. Chem. 2010, 122, 2200–2203.

    Article  Google Scholar 

  38. Jang, J.; Ha, J.; Cho, J. Fabrication of water-dispersible polyaniline - poly (4 - styrenesulfonate) nanoparticles for inkjet-printed chemical-sensor applications. Adv. Mater. 2007, 19, 1772–1775.

    Article  CAS  Google Scholar 

  39. Nomura, K.; Kaji, R.; Iwata, S.; Otao, S.; Imawaka, N.; Yoshino, K.; Mitsui, R.; Sato, J.; Takahashi, S.; Nakajima, S. et al. A flexible proximity sensor formed by duplex screen/ screen-offset printing and its application to non-contact detection of human breathing. Sci. Rep. 2016, 6, 19947.

    Article  CAS  Google Scholar 

  40. Khan, S.; Lorenzelli, L.; Dahiya, R. S. Technologies for printing sensors and electronics over large flexible substrates: A review. IEEE Sens. J. 2015, 15, 3164–3185.

    Article  Google Scholar 

  41. Kuroda Electric Home Page. http://www.kuroda-electric.eu/ Ultra-Fine-Pattern-Screen-Printing (accessed Feb 2, 2018).

  42. Jost, K.; Stenger, D.; Perez, C. R.; McDonough, J. K.; Lian, K.; Gogotsi, Y.; Dion, G. Knitted and screen printed carbon-fiber supercapacitors for applications in wearable electronics. Energy Environ. Sci. 2013, 6, 2698–2705.

    Article  CAS  Google Scholar 

  43. Chen, P.; Chen, H. T.; Qiu, J.; Zhou, C. W. Inkjet printing of single-walled carbon nanotube/RuO2 nanowire supercapacitors on cloth fabrics and flexible substrates. Nano Res. 2010, 3, 594–603.

    Article  CAS  Google Scholar 

  44. de Gans, B. J.; Duineveld, P. C.; Schubert, U. S. Inkjet printing of polymers: State of the art and future developments. Adv. Mater. 2004, 16, 203–213.

    Article  CAS  Google Scholar 

  45. Kumar, B.; Tan, H. S.; Ramalingam, N.; Mhaisalkar, S. G. Integration of ink jet and transfer printing for device fabrication using nanostructured materials. Carbon 2009, 47, 321–324.

    Article  CAS  Google Scholar 

  46. Kawahara, Y.; Hodges, S.; Cook, B. S.; Zhang, C.; Abowd, G. D. Instant inkjet circuits: Lab-based inkjet printing to support rapid prototyping of UbiComp devices. In Proceedings of the 2013 ACM International Joint Conference on Pervasive and Ubiquitous Computing, Zurich, Switzerland, 2013, pp 363–372.

    Google Scholar 

  47. Siegel, A. C.; Phillips, S. T.; Dickey, M. D.; Lu, N. S.; Suo, Z. G.; Whitesides, G. M. Foldable printed circuit boards on paper substrates. Adv. Funct. Mater. 2010, 20, 28–35.

    Article  CAS  Google Scholar 

  48. Yang, C.; Cui, X. Y.; Zhang, Z. X.; Chiang, S. W.; Lin, W.; Duan, H.; Li, J.; Kang, F. Y.; Wong, C. P. Fractal dendrite-based electrically conductive composites for laserscribed flexible circuits. Nat. Commun. 2015, 6, 8150.

    Article  Google Scholar 

  49. Hoth, C. N.; Choulis, S. A.; Schilinsky, P.; Brabec, C. J. High photovoltaic performance of inkjet printed polymer: Fullerene blends. Adv. Mater. 2007, 19, 3973–3978.

    Article  CAS  Google Scholar 

  50. Kim, K.; Zhu, W.; Qu, X.; Aaronson, C.; McCall, W. R.; Chen, S. C.; Sirbuly, D. J. 3D optical printing of piezoelectric nanoparticle–polymer composite materials. ACS Nano 2014, 8, 9799–9806.

    Article  CAS  Google Scholar 

  51. Fu, K.; Yao, Y. G.; Dai, J. Q.; Hu, L. B. Progress in 3D printing of carbon materials for energy-related applications. Adv. Mater. 2017, 29, 1603486.

    Article  CAS  Google Scholar 

  52. Sun, K.; Wei, T. S.; Ahn, B. Y.; Seo, J. Y.; Dillon, S. J.; Lewis, J. A. 3D printing of interdigitated Li-ion microbattery architectures. Adv. Mater. 2013, 25, 4539–4543.

    Article  CAS  Google Scholar 

  53. Zhang, B.; Seong, B.; Nguyen, V.; Byun, D. 3D printing of high-resolution PLA-based structures by hybrid electrohydrodynamic and fused deposition modeling techniques. J. Micromech. Microeng. 2016, 26, 025015.

    Article  CAS  Google Scholar 

  54. Zhu, C.; Han, T. Y. J.; Duoss, E. B.; Golobic, A. M.; Kuntz, J. D.; Spadaccini, C. M.; Worsley, M. A. Highly compressible 3D periodic graphene aerogel microlattices. Nat. Commun. 2015, 6, 6962.

    Article  CAS  Google Scholar 

  55. Zhang, Y. L.; Guo, L.; Wei, S.; He, Y. Y.; Xia, H.; Chen, Q. D.; Sun, H. B.; Xiao, F. S. Direct imprinting of microcircuits on graphene oxides film by femtosecond laser reduction. Nano Today 2010, 5, 15–20.

    Article  CAS  Google Scholar 

  56. Strong, V.; Dubin, S.; El-Kady, M. F.; Lech, A.; Wang, Y.; Weiller, B. H.; Kaner, R. B. Patterning and electronic tuning of laser scribed graphene for flexible all-carbon devices. ACS Nano 2012, 6, 1395–1403.

    Article  CAS  Google Scholar 

  57. Huang, H. C.; Chung, C. J.; Hsieh, C. T.; Kuo, P. L.; Teng, H. Laser fabrication of all-solid-state microsupercapacitors with ultrahigh energy and power based on hierarchical pore carbon. Nano Energy 2016, 21, 90–105.

    Article  CAS  Google Scholar 

  58. El-Kady, M. F.; Ihns, M.; Li, M. P.; Hwang, J. Y.; Mousavi, M. F.; Chaney, L.; Lech, A. T.; Kaner, R. B. Engineering three-dimensional hybrid supercapacitors and microsupercapacitors for high-performance integrated energy storage. Proc. Natl. Acad. Sci. USA 2015, 112, 4233–4238.

    Article  CAS  Google Scholar 

  59. Torrisi, F.; Coleman, J. N. Electrifying inks with 2D materials. Nat. Nanotechnol. 2014, 9, 738–739.

    Article  CAS  Google Scholar 

  60. Cao, L. J.; Yang, S. B.; Gao, W.; Liu, Z.; Gong, Y. J.; Ma, L. L.; Shi, G.; Lei, S. D.; Zhang, Y H.; Zhang, S. T. et al. Direct laser-patterned micro-supercapacitors from paintable MoS2 films. Small 2013, 9, 2905–2910.

    Article  CAS  Google Scholar 

  61. Jung, M.; Kim, J.; Noh, J.; Lim, N.; Lim, C.; Lee, G.; Kim, J.; Kang, H.; Jung, K.; Leonard, A. D. et al. All-printed and roll-to-roll-printable 13.56-MHz-operated 1-bit RF tag on plastic foils. IEEE Trans. Electron Devices 2010, 57, 571–580.

    Article  CAS  Google Scholar 

  62. Yang, L.; Rida, A.; Vyas, R.; Tentzeris, M. M. RFID tag and RF structures on a paper substrate using inkjet-printing technology. IEEE Trans. Microw. Theory Tech. 2007, 55, 2894–2901.

    Article  Google Scholar 

  63. Izumi, K.; Yoshida, Y.; Tokito, S. Improved fine layer patterning using soft blanket gravure printing technology. Flex. Print. Electron. 2018, 3, 015011.

    Article  Google Scholar 

  64. Sheng, X.; Bower, C. A.; Bonafede, S.; Wilson, J. W.; Fisher, B.; Meitl, M.; Yuen, H.; Wang, S. D.; Shen, L.; Banks, A. R. et al. Printing-based assembly of quadruplejunction four-terminal microscale solar cells and their use in high-efficiency modules. Nat. Mater. 2014, 13, 593–598.

    Article  CAS  Google Scholar 

  65. Hoey, J. M.; Lutfurakhmanov, A.; Schulz, D. L.; Akhatov, I. S. A review on aerosol-based direct-write and its applications for microelectronics. J. Nanotechnol. 2012, 2012, Article ID 324380.

    Google Scholar 

  66. Seifert, T.; Sowade, E.; Roscher, F.; Wiemer, M.; Gessner, T.; Baumann, R. R. Additive manufacturing technologies compared: Morphology of deposits of silver ink using inkjet and aerosol jet printing. Ind. Eng. Chem. Res. 2015, 54, 769–779.

    Article  CAS  Google Scholar 

  67. Bag, S.; Deneault, J. R.; Durstock, M. F. Aerosol-jet-assisted thin-film growth of CH3NH3PbI3 perovskites—A means to achieve high quality, defect-free films for efficient solar cells. Adv. Energy Mater. 2017, 7, 1701151.

    Article  CAS  Google Scholar 

  68. Chen, W.; Wu, Y. Z.; Yue, Y. F.; Liu, J.; Zhang, W. J.; Yang, X. D.; Chen, H.; Bi, E. B.; Ashraful, I.; Grätzel, M. et al. Efficient and stable large-area perovskite solar cells with inorganic charge extraction layers. Science 2015, 350, 944–948.

    Article  CAS  Google Scholar 

  69. Shaheen, S. E.; Radspinner, R.; Peyghambarian, N.; Jabbour, G. E. Fabrication of bulk heterojunction plastic solar cells by screen printing. Appl. Phys. Lett. 2001, 79, 2996–2998.

    Article  CAS  Google Scholar 

  70. Guo, Q. J.; Kim, S. J.; Kar, M.; Shafarman, W. N.; Birkmire, R. W.; Stach, E. A.; Agrawal, R.; Hillhouse, H. W. Development of CuInSe2 nanocrystal and nanoring inks for low-cost solar cells. Nano Lett. 2008, 8, 2982–2987.

    Article  CAS  Google Scholar 

  71. Panthani, M. G.; Akhavan, V.; Goodfellow, B.; Schmidtke, J. P.; Dunn, L.; Dodabalapur, A.; Barbara, P. F.; Korgel, B. A. Synthesis of CuInS2, CuInSe2, and Cu (InxGa1–x) Se2 (CIGS) nanocrystal “inks” for printable photovoltaics. J. Am. Chem. Soc. 2008, 130, 16770–16777.

    Article  CAS  Google Scholar 

  72. Kovalenko, M. V. Opportunities and challenges for quantum dot photovoltaics. Nat. Nanotechnol. 2015, 10, 994–997.

    Article  CAS  Google Scholar 

  73. Guo, F.; Li, N.; Radmilovic, V. V.; Radmilovic, V. R.; Turbiez, M.; Spiecker, E.; Forberich, K.; Brabec, C. J. Fully printed organic tandem solar cells using solution-processed silver nanowires and opaque silver as charge collecting electrodes. Energy Environ. Sci. 2015, 8, 1690–1697.

    Article  CAS  Google Scholar 

  74. Hashmi, S. G.; Ozkan, M.; Halme, J.; Misic, K. D.; Zakeeruddin, S. M.; Paltakari, J.; Grätzel, M.; Lund, P. D. High performance dye-sensitized solar cells with inkjet printed ionic liquid electrolyte. Nano Energy 2015, 17, 206–215.

    Article  CAS  Google Scholar 

  75. Hashmi, S. G.; Özkan, M.; Halme, J.; Zakeeruddin, S. M.; Paltakari, J.; Grätzel, M.; Lund, P. D. Dye-sensitized solar cells with inkjet-printed dyes. Energy Environ. Sci. 2016, 9, 2453–2462.

    Article  CAS  Google Scholar 

  76. Hashmi, S. G.; Martineau, D.; Li, X.; Ozkan, M.; Tiihonen, A.; Dar, M. I.; Sarikka, T.; Zakeeruddin, S. M.; Paltakari, J.; Lund, P. D. et al. Air processed inkjet infiltrated carbon based printed perovskite solar cells with high stability and reproducibility. Adv. Mater. Technol. 2017, 2, 1600183.

    Article  CAS  Google Scholar 

  77. Yang, Z. B.; Chueh, C. C.; Zuo, F.; Kim, J. H.; Liang, P. W.; Jen, A. K. Y. High-performance fully printable perovskite solar cells via blade-coating technique under the ambient condition. Adv. Energy Mater. 2015, 5, 1500328.

    Article  CAS  Google Scholar 

  78. Mei, A. Y.; Li, X.; Liu, L. F.; Ku, Z. L.; Liu, T. F.; Rong, Y. G.; Xu, M.; Hu, M.; Chen, J. Z.; Yang, Y. et al. A hole-conductor-free, fully printable mesoscopic perovskite solar cell with high stability. Science 2014, 345, 295–298.

    Article  CAS  Google Scholar 

  79. Etgar, L.; Gao, P.; Xue, Z. S.; Peng, Q.; Chandiran, A. K.; Liu, B.; Nazeeruddin, M. K.; Grätzel, M. Mesoscopic CH3NH3PbI3/TiO2 heterojunction solar cells. J. Am. Chem. Soc. 2012, 134, 17396–17399.

    Article  CAS  Google Scholar 

  80. Ku, Z. L.; Rong, Y. G.; Xu, M.; Liu, T. F.; Han, H. W. Full printable processed mesoscopic CH3NH3PbI3/TiO2 heterojunction solar cells with carbon counter electrode. Sci. Rep. 2013, 3, 3132.

    Article  Google Scholar 

  81. Liu, L. F.; Mei, A. Y.; Liu, T. F.; Jiang, P.; Sheng, Y. S.; Zhang, L. J.; Han, H. W. Fully printable mesoscopic perovskite solar cells with organic silane self-assembled monolayer. J. Am. Chem. Soc. 2015, 137, 1790–1793.

    Article  CAS  Google Scholar 

  82. Xu, M.; Rong, Y. G.; Ku, Z. L.; Mei, A. Y.; Liu, T. F.; Zhang, L. J.; Li, X.; Han, H. W. Highly ordered mesoporous carbon for mesoscopic CH3NH3PbI3/TiO2 heterojunction solar cell. J. Mater. Chem. A 2014, 2, 8607–8611.

    Article  CAS  Google Scholar 

  83. Hu, M.; Liu, L.; Mei, A.; Yang, Y.; Liu, T.; Han, H. Efficient hole-conductor-free, fully printable mesoscopic perovskite solar cells with a broad light harvester NH2CH=NH2PbI3. J. Mater. Chem. A 2014, 2, 17115–17121.

    Article  CAS  Google Scholar 

  84. Cao, K.; Zuo, Z. X.; Cui, J.; Shen, Y.; Moehl, T.; Zakeeruddin, S. M.; Grätzel, M.; Wang, M. K. Efficient screen printed perovskite solar cells based on mesoscopic TiO2/Al2O3/NiO/carbon architecture. Nano Energy 2015, 17, 171–179.

    Article  CAS  Google Scholar 

  85. Chen, J. Z.; Rong, Y. G.; Mei, A. Y.; Xiong, Y. L.; Liu, T. F.; Sheng, Y. S.; Jiang, P.; Hong, L.; Guan, Y. J.; Zhu, X. T. Hole-conductor-free fully printable mesoscopic solar cell with mixed-anion perovskite CH3NH3PbI(3–x)(BF4)x. Adv. Energy Mater. 2016, 6, 1502009.

    Article  CAS  Google Scholar 

  86. Hu, Y.; Si, S.; Mei, A. Y.; Rong, Y. G.; Liu, H. W.; Li, X.; Han, H. W. Stable large-area (10 × 10 cm2) printable mesoscopic perovskite module exceeding 10% efficiency. Solar RRL 2017, 1, 1600019.

    Article  CAS  Google Scholar 

  87. Minemawari, H.; Yamada, T.; Matsui, H.; Tsutsumi, J.; Haas, S.; Chiba, R.; Kumai, R.; Hasegawa, T. Inkjet printing of single-crystal films. Nature 2011, 475, 364–367.

    Article  CAS  Google Scholar 

  88. Hoth, C. N.; Schilinsky, P.; Choulis, S. A.; Brabec, C. J. Printing highly efficient organic solar cells. Nano Lett. 2008, 8, 2806–2813.

    Article  CAS  Google Scholar 

  89. Yu, Y. L.; Nakano, M.; Ikeda, T. Photomechanics: Directed bending of a polymer film by light. Nature 2003, 425, 145.

    Article  CAS  Google Scholar 

  90. Galassi, C. Processing of porous ceramics: Piezoelectric materials. J. Eur. Ceram. Soc. 2006, 26, 2951–2958.

    Article  CAS  Google Scholar 

  91. Maas, R.; Koch, M.; Harris, N. R.; White, N. M.; Evans, A. G. R. Thick-film printing of PZT onto silicon. Mater. Lett. 1997, 31, 109–112.

    Article  CAS  Google Scholar 

  92. Emamian, S.; Narakathu, B. B.; Chlaihawi, A. A.; Bazuin, B. J.; Atashbar, M. Z. Screen printing of flexible piezoelectric based device on polyethylene terephthalate (PET) and paper for touch and force sensing applications. Sens. Actuators A: Phys. 2017, 263, 639–647.

    Article  CAS  Google Scholar 

  93. Lee, Y.; Kim, W.; Bhatia, D.; Hwang, H. J.; Lee, S.; Choi, D. Cam-based sustainable triboelectric nanogenerators with a resolution-free 3D-printed system. Nano Energy 2017, 38, 326–334.

    Article  CAS  Google Scholar 

  94. Jeerapan, I.; Sempionatto, J. R.; Pavinatto, A.; You, J. M.; Wang, J. Stretchable biofuel cells as wearable textile-based self-powered sensors. J. Mater. Chem. A 2016, 4, 18342–18353.

    Article  CAS  Google Scholar 

  95. Kim, D.; Shin, G.; Kang, Y. J.; Kim, W.; Ha, J. S. Fabrication of a stretchable solid-state micro-supercapacitor array. ACS Nano 2013, 7, 7975–7982.

    Article  CAS  Google Scholar 

  96. Wang, K.; Zou, W. J.; Quan, B. G.; Yu, A. F.; Wu, H. P.; Jiang, P.; Wei, Z. X. An all-solid-state flexible microsupercapacitor on a chip. Adv. Energy Mater. 2011, 1, 1068–1072.

    Article  CAS  Google Scholar 

  97. El-Kady, M. F.; Kaner, R. B. Scalable fabrication of highpower graphene micro-supercapacitors for flexible and on-chip energy storage. Nat. Commun. 2013, 4, 1475.

    Article  CAS  Google Scholar 

  98. Gao, W.; Singh, N.; Song, L.; Liu, Z.; Reddy, A. L. M.; Ci, L.; Vajtai, R.; Zhang, Q.; Wei, B. Q.; Ajayan, P. M. Direct laser writing of micro-supercapacitors on hydrated graphite oxide films. Nat. Nanotechnol. 2011, 6, 496–500.

    Article  CAS  Google Scholar 

  99. Simon, P.; Gogotsi, Y. Materials for electrochemical capacitors. Nat. Mater. 2008, 7, 845–854.

    Article  CAS  Google Scholar 

  100. Jayalakshmi, M.; Balasubramanian, K. Simple capacitors to supercapacitors—An overview. Int. J. Electrochem. Sci. 2008, 3, 1196–1217.

    CAS  Google Scholar 

  101. Hu, L. B.; Choi, J. W.; Yang, Y.; Jeong, S.; La Mantia, F.; Cui, L. F.; Cui, Y. Highly conductive paper for energystorage devices. Proc. Natl. Acad. Sci. USA 2009, 106, 21490–21494.

    Article  Google Scholar 

  102. Jost, K.; Perez, C. R.; McDonough, J. K.; Presser, V.; Heon, M.; Dion, G.; Gogotsi, Y. Carbon coated textiles for flexible energy storage. Energy Environ. Sci. 2011, 4, 5060–5067.

    Article  CAS  Google Scholar 

  103. Le, L. T.; Ervin, M. H.; Qiu, H. W.; Fuchs, B. E.; Lee, W. Y. Graphene supercapacitor electrodes fabricated by inkjet printing and thermal reduction of graphene oxide. Electrochem. Commun. 2011, 13, 355–358.

    Article  CAS  Google Scholar 

  104. Bandodkar, A. J.; López, C. S.; Mohan, A. M. V.; Yin, L.; Kumar, R.; Wang, J. All-printed magnetically self-healing electrochemical devices. Sci. Adv. 2016, 2, e1601465.

    Article  CAS  Google Scholar 

  105. Li, R. Z.; Peng, R.; Kihm, K. D.; Bai, S.; Bridges, D.; Tumuluri, U.; Wu, Z.; Zhang, T.; Compagnini, G.; Feng, Z. et al. High-rate in-plane micro-supercapacitors scribed onto photo paper using in situ femtolaser-reduced graphene oxide/Au nanoparticle microelectrodes. Energy Environ. Sci. 2016, 9, 1458–1467.

    Article  CAS  Google Scholar 

  106. Choi, K. H.; Yoo, J.; Lee, C. K.; Lee, S. Y. All-inkjetprinted, solid-state flexible supercapacitors on paper. Energy Environ. Sci. 2016, 9, 2812–2821.

    Article  CAS  Google Scholar 

  107. Cai, J. G.; Lv, C.; Watanabe, A. Cost-effective fabrication of high-performance flexible all-solid-state carbon microsupercapacitors by blue-violet laser direct writing and further surface treatment. J. Mater. Chem. A 2016, 4, 1671–1679.

    Article  CAS  Google Scholar 

  108. Pang, H.; Zhang, Y. Z.; Lai, W. Y.; Hu, Z.; Huang, W. Lamellar K2Co3(P2O7)2·2H2O nanocrystal whiskers: Highperformance flexible all-solid-state asymmetric microsupercapacitors via inkjet printing. Nano Energy 2015, 15, 303–312.

    Article  CAS  Google Scholar 

  109. Li, Y.; Fu, Z. Y.; Su, B. L. Hierarchically structured porous materials for energy conversion and storage. Adv. Funct. Mater. 2012, 22, 4634–4667.

    Article  CAS  Google Scholar 

  110. Li, H.; Tao, Y.; Zheng, X. Y.; Luo, J. Y.; Kang, F. Y.; Cheng, H. M.; Yang, Q. H. Ultra-thick graphene bulk supercapacitor electrodes for compact energy storage. Energy Environ. Sci. 2016, 9, 3135–3142.

    Article  CAS  Google Scholar 

  111. Vu, A.; Qian, Y. Q.; Stein, A. Porous electrode materials for lithium-ion batteries—How to prepare them and what makes them special. Adv. Energy Mater. 2012, 2, 1056–1085.

    Article  CAS  Google Scholar 

  112. Blake, A. J.; Kohlmeyer, R. R.; Hardin, J. O.; Carmona, E. A.; Maruyama, B.; Berrigan, J. D.; Huang, H.; Durstock, M. F. 3D printable ceramic–polymer electrolytes for flexible high-performance Li-ion batteries with enhanced thermal stability. Adv. Energy Mater. 2017, 7, 1602920.

    Article  CAS  Google Scholar 

  113. Ning, H. L.; Pikul, J. H.; Zhang, R. Y.; Li, X. J.; Xu, S.; Wang, J. J.; Rogers, J. A.; King, W. P.; Braun, P. V. Holographic patterning of high-performance on-chip 3D lithium-ion microbatteries. Proc. Natl. Acad. Sci. USA 2015, 112, 6573–6578.

    Article  CAS  Google Scholar 

  114. Zhu, C.; Liu, T. Y.; Qian, F.; Han, T. Y. J.; Duoss, E. B.; Kuntz, J. D.; Spadaccini, C. M.; Worsley, M. A.; Li, Y. Supercapacitors based on three-dimensional hierarchical graphene aerogels with periodic macropores. Nano Lett. 2016, 16, 3448–3456.

    Article  CAS  Google Scholar 

  115. El-Kady, M. F.; Strong, V.; Dubin, S.; Kaner, R. B. Laser scribing of high-performance and flexible graphene-based electrochemical capacitors. Science 2012, 335, 1326–1330.

    Article  CAS  Google Scholar 

  116. Lin, Y. J.; Gao, Y.; Fan, Z. Y. Printable fabrication of nanocoral-structured electrodes for high-performance flexible and planar supercapacitor with artistic design. Adv. Mater. 2017, 29, 1701736.

    Article  CAS  Google Scholar 

  117. Zhao, C.; Wang, C. Y.; Gorkin, R.; Beirne, S.; Shu, K. W.; Wallace, G. G. Three dimensional (3D) printed electrodes for interdigitated supercapacitors. Electrochem. Commun. 2014, 41, 20–23.

    Article  CAS  Google Scholar 

  118. Hu, J. T.; Jiang, Y.; Cui, S. H.; Duan, Y. D.; Liu, T. C.; Guo, H.; Lin, L. P.; Lin, Y.; Zheng, J. X.; Amine, K. et al. 3D-printed cathodes of LiMn1–xFexPO4 nanoCrystals achieve both ultrahigh rate and high capacity for advanced lithium -ion battery. Adv. Energy Mater. 2016, 6, 1600856.

    Article  CAS  Google Scholar 

  119. Gaikwad, A. M.; Steingart, D. A.; Nga Ng, T.; Schwartz, D. E.; Whiting, G. L. A flexible high potential printed battery for powering printed electronics. Appl. Phys. Lett. 2013, 102, 233302.

    Article  CAS  Google Scholar 

  120. Braam, K.; Subramanian, V. A stencil printed, high energy density silver oxide battery using a novel photopolymerizable poly(acrylic acid) separator. Adv. Mater. 2015, 27, 689–694.

    Article  CAS  Google Scholar 

  121. Gaikwad, A. M.; Whiting, G. L.; Steingart, D. A.; Arias, A. C. Highly flexible, printed alkaline batteries based on mesh-embedded electrodes. Adv. Mater. 2011, 23, 3251–3255.

    Article  CAS  Google Scholar 

  122. Kumar, R.; Shin, J.; Yin, L.; You, J. M.; Meng, Y. S.; Wang, J. All-printed, stretchable Zn-Ag2O rechargeable battery via hyperelastic binder for self-powering wearable electronics. Adv. Energy Mater. 2017, 7, 1602096.

    Article  CAS  Google Scholar 

  123. Fu, K.; Wang, Y. B.; Yan, C. Y.; Yao, Y. G.; Chen, Y.; Dai, J. Q.; Lacey, S.; Wang, Y. B.; Wan, J. Y.; Li, T. et al. Graphene oxide - based electrode inks for 3D-printed lithium-ion batteries. Adv. Mater. 2016, 28, 2587–2594.

    Article  CAS  Google Scholar 

  124. Milroy, C. A.; Jang, S.; Fujimori, T.; Dodabalapur, A.; Manthiram, A. Inkjet-printed lithium–sulfur microcathodes for all-printed, integrated nanomanufacturing. Small 2017, 13, 1603786.

    Article  CAS  Google Scholar 

  125. Kim, S. H.; Choi, K. H.; Cho, S. J.; Choi, S.; Park, S.; Lee, S. Y. Printable solid-state lithium-ion batteries: A new route toward shape-conformable power sources with aesthetic versatility for flexible electronics. Nano Lett. 2015, 15, 5168–5177.

    Article  CAS  Google Scholar 

  126. Kim, S. H.; Choi, K. H.; Cho, S. J.; Yoo, J.; Lee, S. S.; Lee, S. Y. Flexible/shape-versatile, bipolar all-solid-state lithium-ion batteries prepared by multistage printing. Energy Enviro. Sci. 2018, 11, 321–330.

    Article  CAS  Google Scholar 

  127. Gao, Z.; Bumgardner, C.; Song, N.; Zhang, Y.; Li, J.; Li, X. Cotton-textile-enabled flexible self-sustaining power packs via roll-to-roll fabrication. Nat. Commun. 2016, 7, 11586.

    Article  CAS  Google Scholar 

  128. Mahmoudzadeh, M. A.; Usgaocar, A. R.; Giorgio, J.; Officer, D. L.; Wallace, G. G.; Madden, J. D. A high energy density solar rechargeable redox battery. J. Mater. Chem. A 2016, 4, 3446–3452.

    Article  CAS  Google Scholar 

  129. Guo, W. X.; Xue, X. Y.; Wang, S. H.; Lin, C. J.; Wang, Z. L. An integrated power pack of dye-sensitized solar cell and Li battery based on double-sided TiO2 nanotube arrays. Nano Lett. 2012, 12, 2520–2523.

    Article  CAS  Google Scholar 

  130. Chen, X. L.; Sun, H.; Yang, Z. B.; Guan, G. Z.; Zhang, Z. T.; Qiu, L. B.; Peng, H. S. A novel “energy fiber” by coaxially integrating dye-sensitized solar cell and electrochemical capacitor. J. Mater. Chem. A 2014, 2, 1897–1902.

    Article  CAS  Google Scholar 

  131. Xu, X. B.; Li, S. H.; Zhang, H.; Shen, Y.; Zakeeruddin, S. M.; Grätzel, M.; Cheng, Y. B.; Wang, M. K. A power pack based on organometallic perovskite solar cell and supercapacitor. ACS Nano 2015, 9, 1782–1787.

    Article  CAS  Google Scholar 

  132. Cohn, A. P.; Erwin, W. R.; Share, K.; Oakes, L.; Westover, A. S.; Carter, R. E.; Bardhan, R.; Pint, C. L. All silicon electrode photocapacitor for integrated energy storage and conversion. Nano Lett. 2015, 15, 2727–2731.

    Article  CAS  Google Scholar 

  133. Bae, J.; Park, Y. J.; Lee, M.; Cha, S. N.; Choi, Y. J.; Lee, C. S.; Kim, J. M.; Wang, Z. L. Single-fiber-based hybridization of energy converters and storage units using graphene as electrodes. Adv. Mater. 2011, 23, 3446–3449.

    Article  CAS  Google Scholar 

  134. Schmidt, D.; Hager, M. D.; Schubert, U. S. Photorechargeable electric energy storage systems. Adv. Energy Mater. 2016, 6, 1500369.

    Article  CAS  Google Scholar 

  135. Xu, J. T.; Chen, Y. H.; Dai, L. M. Efficiently photocharging lithium-ion battery by perovskite solar cell. Nat. Commun. 2015, 6, 8103.

    Article  CAS  Google Scholar 

  136. Zhou, F. C.; Ren, Z. W.; Zhao, Y. D.; Shen, X. P.; Wang, A. W.; Li, Y. Y.; Surya, C.; Chai, Y. Perovskite photovoltachromic supercapacitor with all-transparent electrodes. ACS Nano 2016, 10, 5900–5908.

    Article  CAS  Google Scholar 

  137. Shi, C. L.; Dong, H.; Zhu, R.; Li, H.; Sun, Y. C.; Xu, D. S.; Zhao, Q.; Yu, D. P. An “all-in-one” mesh-typed integrated energy unit for both photoelectric conversion and energy storage in uniform electrochemical system. Nano Energy 2015, 13, 670–678.

    Article  CAS  Google Scholar 

  138. Yang, Z. B.; Li, L.; Luo, Y. F.; He, R. X.; Qiu, L. B.; Lin, H. J.; Peng, H. S. An integrated device for both photoelectric conversion and energy storage based on free-standing and aligned carbon nanotube film. J. Mater. Chem. A 2013, 1, 954–958.

    Article  CAS  Google Scholar 

  139. Chen, T.; Qiu, L. B.; Yang, Z. B.; Cai, Z. B.; Ren, J.; Li, H. P.; Lin, H. J.; Sun, X. M.; Peng, H. S. An integrated “energy wire” for both photoelectric conversion and energy storage. Angew. Chem., Int. Ed. 2012, 51, 11977–11980.

    Article  CAS  Google Scholar 

  140. Zhang, Z. T.; Chen, X. L.; Chen, P. N.; Guan, G. Z.; Qiu, L. B.; Lin, H. J.; Yang, Z. B.; Bai, W. Y.; Luo, Y. F.; Peng, H. S. Integrated polymer solar cell and electrochemical supercapacitor in a flexible and stable fiber format. Adv. Mater. 2014, 26, 466–470.

    Article  CAS  Google Scholar 

  141. Fu, Y. P.; Wu, H. W.; Ye, S. Y.; Cai, X.; Yu, X.; Hou, S. C.; Kafafy, H.; Zou, D. C. Integrated power fiber for energy conversion and storage. Energy Environ. Sci. 2013, 6, 805–812.

    Article  CAS  Google Scholar 

  142. Xia, X. H.; Ku, Z. L.; Zhou, D.; Zhong, Y.; Zhang, Y. Q.; Wang, Y. D.; Huang, M. J.; Tu, J. P.; Fan, H. J. Perovskite solar cell powered electrochromic batteries for smart windows. Mater. Horiz. 2016, 3, 588–595.

    Article  CAS  Google Scholar 

  143. Cai, G. F.; Darmawan, P.; Cui, M. Q.; Chen, J. W.; Wang, X.; Eh, A. L. S.; Magdassi, S.; Lee, P. S. Inkjet-printed all solid-state electrochromic devices based on NiO/WO3 nanoparticle complementary electrodes. Nanoscale 2016, 8, 348–357.

    Article  CAS  Google Scholar 

  144. Berggren, M.; Nilsson, D.; Robinson, N. D. Organic materials for printed electronics. Nat. Mater. 2007, 6, 3–5.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge financial support from National Natural Science Foundation of China (No. 51672231), Hong Kong Research Grant Council (General Research Fund Project No. 16237816), and Center for 1D/2D Quantum Materials and State Key Laboratory on Advanced Displays and Optoelectronics at HKUST.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Fang Fang or Zhiyong Fan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lin, Y., Gao, Y., Fang, F. et al. Recent progress on printable power supply devices and systems with nanomaterials. Nano Res. 11, 3065–3087 (2018). https://doi.org/10.1007/s12274-018-2068-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-018-2068-y

Keywords

Navigation