Skip to main content
Log in

Integrated solar capacitors for energy conversion and storage

  • Review Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Solar energy is one of the most popular clean energy sources and is a promising alternative to fulfill the increasing energy demands of modern society. Solar cells have long been under intensive research attention for harvesting energy from sunlight with a high power-conversion efficiency and low cost. However, the power outputs of photovoltaic devices suffer from fluctuations due to the intermittent instinct of the solar radiation. Integrating solar cells and energystorage devices as self-powering systems may solve this problem through the simultaneous storage of the electricity and manipulation of the energy output. This review summarizes the research progress in the integration of new-generation solar cells with supercapacitors, with emphasis on the structures, materials, performance, and new design features. The current challenges and future prospects are discussed with the aim of expanding research and development in this field.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Miyasaka, T.; Murakami, T. N. The photocapacitor: An efficient self-charging capacitor for direct storage of solar energy. Appl. Phys. Lett. 2004, 85, 3932–3934.

    Article  Google Scholar 

  2. Bae, J.; Park, Y. J.; Lee, M.; Cha, S. N.; Choi, Y. J.; Lee, C. S.; Kim, J. M.; Wang, Z. L. Single-fiber-based hybridization of energy converters and storage units using graphene as electrodes. Adv. Mater. 2011, 23, 3446–3449.

    Article  Google Scholar 

  3. Wee, G.; Salim, T.; Lam, Y. M.; Mhaisalkar, S. G.; Srinivasan, M. Printable photo-supercapacitor using singlewalled carbon nanotubes. Energy Environ. Sci. 2011, 4, 413–416.

    Article  Google Scholar 

  4. Guo, W. X.; Xue, X. Y.; Wang, S. H.; Lin, C. J.; Wang, Z. L. An integrated power pack of dye-sensitized solar cell and Li battery based on double-sided TiO2 nanotube arrays. Nano Lett. 2012, 12, 2520–2523.

    Article  Google Scholar 

  5. Zhang, Z. T.; Chen, X. L.; Chen, P. N.; Guan, G. Z.; Qiu, L. B.; Lin, H. J.; Yang, Z. B.; Bai, W. Y.; Luo, Y. F.; Peng, H. S. Integrated polymer solar cell and electrochemical supercapacitor in a flexible and stable fiber format. Adv. Mater. 2014, 26, 466–470.

    Article  Google Scholar 

  6. Xu, J. T.; Chen, Y. H.; Dai, L. M. Efficiently photo-charging lithium-ion battery by perovskite solar cell. Nat. Commun. 2015, 6, 8103.

    Article  Google Scholar 

  7. Chen, J.; Huang, Y.; Zhang, N. N.; Zou, H. Y.; Liu, R. Y.; Tao, C. Y.; Fan, X.; Wang, Z. L. Micro-cable structured textile for simultaneously harvesting solar and mechanical energy. Nat. Energy 2016, 1, 16138.

    Article  Google Scholar 

  8. Law, M.; Greene, L. E.; Johnson, J. C.; Saykally, R.; Yang, P. D. Nanowire dye-sensitized solar cells. Nat. Mater. 2005, 4, 455–459.

    Article  Google Scholar 

  9. Ma, W.; Yang, C.; Gong, X.; Lee, K.; Heeger, A. J. Thermally stable, efficient polymer solar cells with nanoscale control of the interpenetrating network morphology. Adv. Funct. Mater. 2005, 15, 1617–1622.

    Article  Google Scholar 

  10. Chen, H.-Y.; Hou, J. H.; Zhang, S. Q.; Liang, Y. Y.; Yang, G. W.; Yang, Y.; Yu, L. P.; Wu, Y.; Li, G. Polymer solar cells with enhanced open-circuit voltage and efficiency. Nat. Photonics 2009, 3, 649–653.

    Article  Google Scholar 

  11. Hagfeldt, A.; Boschloo, G.; Sun, L. C.; Kloo, L.; Pettersson, H. Dye-sensitized solar cells. Chem. Rev. 2010, 110, 6595–6663.

    Article  Google Scholar 

  12. Lee, M. M.; Teuscher, J.; Miyasaka, T.; Murakami, T. N.; Snaith, H. J. Efficient hybrid solar cells based on mesosuperstructured organometal halide perovskites. Science 2012, 338, 643–647.

    Article  Google Scholar 

  13. Li, G.; Zhu, R.; Yang, Y. Polymer solar cells. Nat. Photonics 2012, 6, 153–161.

    Article  Google Scholar 

  14. Liu, M. Z.; Johnston, M. B.; Snaith, H. J. Efficient planar heterojunction perovskite solar cells by vapour deposition. Nature 2013, 501, 395–398.

    Article  Google Scholar 

  15. He, Z. C.; Xiao, B.; Liu, F.; Wu, H. B.; Yang, Y. L.; Xiao, S.; Wang, C.; Russell, T. P.; Cao, Y. Single-junction polymer solar cells with high efficiency and photovoltage. Nat. Photonics 2015, 9, 174–179.

    Article  Google Scholar 

  16. Jeon, N. J.; Noh, J. H.; Yang, W. S.; Kim, Y. C.; Ryu, S.; Seo, J.; Seok, S. I. Compositional engineering of perovskite materials for high-performance solar cells. Nature 2015, 517, 476–480.

    Article  Google Scholar 

  17. Nie, W. Y.; Tsai, H.; Asadpour, R.; Blancon, J.-C.; Neukirch, A. J.; Gupta, G.; Crochet, J. J.; Chhowalla, M.; Tretiak, S.; Alam, M. A. et al. High-efficiency solution-processed perovskite solar cells with millimeter-scale grains. Science 2015, 347, 522–525.

    Article  Google Scholar 

  18. Liu, R. Y.; Lee, S. T.; Sun, B. Q. 13.8% efficiency hybrid Si/organic heterojunction solar cells with MoO3 film as antireflection and inversion induced layer. Adv. Mater. 2014, 26, 6007–6012.

    Article  Google Scholar 

  19. Winter, M.; Brodd, R. J. What are batteries, fuel cells, and supercapacitors? Chem. Rev. 2004, 104, 4245–4270.

    Article  Google Scholar 

  20. Yang, Z. G.; Zhang, J. L.; Kintner-Meyer, M. C. W.; Lu, X. C.; Choi, D.; Lemmon, J. P.; Liu, J. Electrochemical energy storage for green grid. Chem. Rev. 2011, 111, 3577–3613.

    Article  Google Scholar 

  21. Zhang, L. L.; Zhao, X. S. Carbon-based materials as supercapacitor electrodes. Chem. Soc. Rev. 2009, 38, 2520–2531.

    Article  Google Scholar 

  22. Chen, S.; Zhu, J. W.; Wu, X. D.; Han, Q. F.; Wang, X. Graphene oxide-MnO2 nanocomposites for supercapacitors. ACS Nano 2010, 4, 2822–2830.

    Article  Google Scholar 

  23. Wang, H. L.; Holt, C. M. B.; Li, Z.; Tan, X. H.; Amirkhiz, B. S.; Xu, Z. W.; Olsen, B. C.; Stephenson, T.; Mitlin, D. Graphene-nickel cobaltite nanocomposite asymmetrical supercapacitor with commercial level mass loading. Nano Res. 2012, 5, 605–617.

    Article  Google Scholar 

  24. Peng, M.; Zou, D. C. Flexible fiber/wire-shaped solar cells in progress: Properties, materials, and designs. J. Mater. Chem. A 2015, 3, 20435–20458.

    Article  Google Scholar 

  25. Wang, X. F.; Jiang, K.; Shen, G. Z. Flexible fiber energy storage and integrated devices: Recent progress and perspectives. Mater. Today 2015, 18, 265–272.

    Article  Google Scholar 

  26. Huang, Q. Y.; Wang, D. R.; Zheng, Z. J. Textile-based electrochemical energy storage devices. Adv. Energy Mater. 2016, 6, 1600783.

    Article  Google Scholar 

  27. Huang, Y.; Zhu, M. S.; Huang, Y.; Pei, Z. X.; Li, H. F.; Wang, Z. F.; Xue, Q.; Zhi, C. Y. Multifunctional energy storage and conversion devices. Adv. Mater. 2016, 28, 8344–8364.

    Article  Google Scholar 

  28. Zhou, F. C.; Ren, Z. W.; Zhao, Y. D.; Shen, X. P.; Wang, A. W.; Li, Y. Y.; Surya, C.; Chai, Y. Perovskite photovoltachromic supercapacitor with all-transparent electrodes. ACS Nano 2016, 10, 5900–5908.

    Article  Google Scholar 

  29. Chen, T.; Qiu, L. B.; Yang, Z. B.; Cai, Z. B.; Ren, J.; Li, H. P.; Lin, H. J.; Sun, X. M.; Peng, H. S. An integrated “energy wire” for both photoelectric conversion and energy storage. Angew. Chem., Int. Ed. 2012, 51, 11977–11980.

    Article  Google Scholar 

  30. Xu, J.; Wu, H.; Lu, L. F.; Leung, S. F.; Chen, D.; Chen, X. Y.; Fan, Z. Y.; Shen, G. Z.; Li, D. D. Integrated photosupercapacitor based on Bi-polar TiO2 nanotube arrays with selective one-side plasma-assisted hydrogenation. Adv. Funct. Mate. 2014, 24, 1840–1846.

    Article  Google Scholar 

  31. Hodes, G.; Manassen, J.; Cahen, D. Photoelectrochemical energy conversion and storage using polycrystalline chalcogenide electrodes. Nature 1976, 261, 403–404.

    Article  Google Scholar 

  32. O’Regan, B.; Grätzel, M. A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films. Nature 1991, 353, 737–740.

    Article  Google Scholar 

  33. Matsui, T.; Sai, H.; Saito, K.; Kondo, M. High-efficiency thin-film silicon solar cells with improved light-soaking stability. Prog. Photovolt.: Res. Appl. 2013, 21, 1363–1369.

    Article  Google Scholar 

  34. Green, M. A.; Emery, K.; Hishikawa, Y.; Warta, W.; Dunlop, E. D. Solar cell efficiency tables (Version 45). Prog. Photovolt.: Res. Appl. 2015, 23, 1–9.

    Article  Google Scholar 

  35. Kakiage, K.; Aoyama, Y.; Yano, T.; Oya, K.; Fujisawa, J.-I.; Hanaya, M. Highly-efficient dye-sensitized solar cells with collaborative sensitization by silyl-anchor and carboxy-anchor dyes. Chem. Commun. 2015, 51, 15894–15897.

    Article  Google Scholar 

  36. Murakami, T. N.; Kawashima, N.; Miyasaka, T. A high-voltage dye-sensitized photocapacitor of a three-electrode system. Chem. Commun. 2005, 3346–3348.

    Google Scholar 

  37. Hsu, C.-Y.; Chen, H.-W.; Lee, K.-M.; Hu, C.-W.; Ho, K.-C. A dye-sensitized photo-supercapacitor based on PProDOT-Et2 thick films. J. Power Sources 2010, 195, 6232–6238.

    Article  Google Scholar 

  38. Fu, Y. P.; Wu, H. W.; Ye, S. Y.; Cai, X.; Yu, X.; Hou, S. C.; Kafafy, H.; Zou, D. C. Integrated power fiber for energy conversion and storage. Energy Environ. Sci. 2013, 6, 805–812.

    Article  Google Scholar 

  39. Yang, Z. B.; Li, L.; Luo, Y. F.; He, R. X.; Qiu, L. B.; Lin, H. J.; Peng, H. S. An integrated device for both photoelectric conversion and energy storage based on free-standing and aligned carbon nanotube film. J. Mater. Chem. A 2013, 1, 954–958.

    Article  Google Scholar 

  40. Yang, Z. B.; Deng, J.; Sun, H.; Ren, J.; Pan, S. W.; Peng, H. S. Self-powered energy fiber: Energy conversion in the sheath and storage in the core. Adv. Mater. 2014, 26, 7038–7042.

    Article  Google Scholar 

  41. Cohn, A. P.; Erwin, W. R.; Share, K.; Oakes, L.; Westover, A. S.; Carter, R. E.; Bardhan, R.; Pint, C. L. All silicon electrode photocapacitor for integrated energy storage and conversion. Nano Lett. 2015, 15, 2727–2731.

    Article  Google Scholar 

  42. Hauch, A.; Georg, A.; Krašovec, U. O.; Orel, B. Photovoltaically self-charging battery. J. Electrochem. Soc. 2002, 149, A1208–A1211.

    Article  Google Scholar 

  43. Liu, P.; Cao, Y. L.; Li, G. R.; Gao, X. P.; Ai, X. P.; Yang, H. X. A solar rechargeable flow battery based on photoregeneration of two soluble redox couples. ChemSusChem 2013, 6, 802–806.

    Article  Google Scholar 

  44. Zhang, X.; Huang, X. Z.; Li, C. S.; Jiang, H. R. Dyesensitized solar cell with energy storage function through PVDF/ZnO nanocomposite counter electrode. Adv. Mater. 2013, 25, 4093–4096.

    Article  Google Scholar 

  45. Chen, H.-W.; Hsu, C.-Y.; Chen, J.-G.; Lee, K.-M.; Wang, C.-C.; Huang, K.-C.; Ho, K.-C. Plastic dye-sensitized photo-supercapacitor using electrophoretic deposition and compression methods. J. Power Sources 2010, 195, 6225–6231.

    Article  Google Scholar 

  46. Lechêne, B. P.; Cowell, M.; Pierre, A.; Evans, J. W.; Wright, P. K.; Arias, A. C. Organic solar cells and fully printed super-capacitors optimized for indoor light energy harvesting. Nano Energy 2016, 26, 631–640.

    Article  Google Scholar 

  47. Xu, X. B.; Li, S. H.; Zhang, H.; Shen, Y.; Zakeeruddin, S. M.; Graetzel, M.; Cheng, Y.-B.; Wang, M. K. A power pack based on organometallic perovskite solar cell and supercapacitor. ACS Nano 2015, 9, 1782–1787.

    Article  Google Scholar 

  48. Xu, J.; Ku, Z. L.; Zhang, Y. Q.; Chao, D. L.; Fan, H. J. Integrated photo-supercapacitor based on pedot modified printable perovskite solar cell. Adv. Mater. Technol. 2016, 1, 1600074.

    Article  Google Scholar 

  49. Zhang, M.; Zhou, Q. Q.; Chen, J.; Yu, X. W.; Huang, L.; Li, Y. R.; Li, C.; Shi, G. Q. An ultrahigh-rate electrochemical capacitor based on solution-processed highly conductive PEDOT:PSS films for AC line-filtering. Energy Environ. Sci. 2016, 9, 2005–2010.

    Article  Google Scholar 

  50. Snook, G. A.; Kao, P.; Best, A. S. Conducting-polymer-based supercapacitor devices and electrodes. J. Power Sources 2011, 196, 1–12.

    Article  Google Scholar 

  51. Zhang, X. J.; Shi, W. H.; Zhu, J. X.; Zhao, W. Y.; Ma, J.; Mhaisalkar, S.; Maria, T. L.; Yang, Y. H.; Zhang, H.; Hng, H. H. et al. Synthesis of porous NiO nanocrystals with controllable surface area and their application as supercapacitor electrodes. Nano Res. 2010, 3, 643–652.

    Article  Google Scholar 

  52. Wang, H. L.; Liang, Y. Y.; Mirfakhrai, T.; Chen, Z.; Casalongue, H. S.; Dai, H. J. Advanced asymmetrical supercapacitors based on graphene hybrid materials. Nano Res. 2011, 4, 729–736.

    Article  Google Scholar 

  53. Lu, X. H.; Zhai, T.; Zhang, X. H.; Shen, Y. Q.; Yuan, L. Y.; Hu, B.; Gong, L.; Chen, J.; Gao, Y. H.; Zhou, J. et al. WO3–x@Au@MnO2 core–shell nanowires on carbon fabric for high-performance flexible supercapacitors. Adv. Mater. 2012, 24, 938–944.

    Google Scholar 

  54. Kaempgen, M.; Chan, C. K.; Ma, J.; Cui, Y.; Gruner, G. Printable thin film supercapacitors using single-walled carbon nanotubes. Nano Lett. 2009, 9, 1872–1876.

    Article  Google Scholar 

  55. Shi, C. L.; Dong, H.; Zhu, R.; Li, H.; Sun, Y. C.; Xu, D. S.; Zhao, Q.; Yu, D. P. An “all-in-one” mesh-typed integrated energy unit for both photoelectric conversion and energy storage in uniform electrochemical system. Nano Energy 2015, 13, 670–678.

    Article  Google Scholar 

  56. Skunik-Nuckowska, M.; Grzejszczyk, K.; Kulesza, P. J.; Yang, L.; Vlachopoulos, N.; Häggman, L.; Johansson, E.; Hagfeldt, A. Integration of solid-state dye-sensitized solar cell with metal oxide charge storage material into photoelectrochemical capacitor. J. Power Sources 2013, 234, 91–99.

    Article  Google Scholar 

  57. Zheng, J. P.; Cygan, P. J.; Jow, T. R. Hydrous ruthenium oxide as an electrode material for electrochemical capacitors. J. Electrochem. Soc. 1995, 142, 2699–2703.

    Article  Google Scholar 

  58. Chen, X. L.; Sun, H.; Yang, Z. B.; Guan, G. Z.; Zhang, Z. T.; Qiu, L. B.; Peng, H. S. A novel “energy fiber” by coaxially integrating dye-sensitized solar cell and electrochemical capacitor. J. Mater. Chem. A 2014, 2, 1897–1902.

    Article  Google Scholar 

  59. Chen, J. D.; Cui, C. H.; Li, Y. Q.; Zhou, L.; Ou, Q. D.; Li, C.; Li, Y. F.; Tang, J. X. Single-junction polymer solar cells exceeding 10% power conversion efficiency. Adv. Mater. 2015, 27, 1035–1041.

    Article  Google Scholar 

  60. Liu, C.; Yi, C.; Wang, K.; Yang, Y. L.; Bhatta, R. S.; Tsige, M.; Xiao, S. Y.; Gong, X. Single-junction polymer solar cells with over 10% efficiency by a novel twodimensional donor–acceptor conjugated copolymer. ACS Appl. Mater. Interfaces 2015, 7, 4928–4935.

    Article  Google Scholar 

  61. Zhou, H. Q.; Zhang, Y.; Mai, C. K.; Collins, S. D.; Bazan, G. C.; Nguyen, T. Q.; Heeger, A. J. Polymer homo-tandem solar cells with best efficiency of 11.3%. Adv. Mater. 2015, 27, 1767–1773.

    Article  Google Scholar 

  62. Kojima, A.; Teshima, K.; Shirai, Y.; Miyasaka, T. Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. J. Am. Chem. Soc. 2009, 131, 6050–6051.

    Article  Google Scholar 

  63. Ball, J. M.; Lee, M. M.; Hey, A.; Snaith, H. J. Low-temperature processed meso-superstructured to thin-film perovskite solar cells. Energy Environ. Sci. 2013, 6, 1739–1743.

    Article  Google Scholar 

  64. Bai, S.; Wu, Z. W.; Wu, X. J.; Jin, Y. Z.; Zhao, N.; Chen, Z. H.; Mei, Q. Q.; Wang, X.; Ye, Z. Z.; Song, T. et al. High-performance planar heterojunction perovskite solar cells: Preserving long charge carrier diffusion lengths and interfacial engineering. Nano Res. 2014, 7, 1749–1758.

    Article  Google Scholar 

  65. Im, J.-H.; Jang, I.-H.; Pellet, N.; Grätzel, M.; Park, N.-G. Growth of CH3NH3PbI3 cuboids with controlled size for high-efficiency perovskite solar cells. Nat. Nanotechnol. 2014, 9, 927–932.

    Article  Google Scholar 

  66. Ahn, N.; Son, D.-Y.; Jang, I.-H.; Kang, S. M.; Choi, M.; Park, N.-G. Highly reproducible perovskite solar cells with average efficiency of 18.3% and best efficiency of 19.7% fabricated via lewis base adduct of lead(II) iodide. J. Am. Chem. Soc. 2015, 137, 8696–8699.

    Article  Google Scholar 

  67. Chen, W.; Wu, Y. Z.; Yue, Y. F.; Liu, J.; Zhang, W. J.; Yang, X. D.; Chen, H.; Bi, E. B.; Ashraful, I.; Grätzel, M. et al. Efficient and stable large-area perovskite solar cells with inorganic charge extraction layers. Science 2015, 350, 944–948.

    Article  Google Scholar 

  68. Jacobsson, T. J.; Correa-Baena, J.-P.; Pazoki, M.; Saliba, M.; Schenk, K.; Grätzel, M.; Hagfeldt, A. Exploration of the compositional space for mixed lead halogen perovskites for high efficiency solar cells. Energy Environ. Sci. 2016, 9, 1706–1724.

    Article  Google Scholar 

  69. Li, X.; Bi, D. Q.; Yi, C. Y.; Décoppet, J.-D.; Luo, J. S.; Zakeeruddin, S. M.; Hagfeldt, A.; Grätzel, M. A vacuum flash-assisted solution process for high-efficiency large-area perovskite solar cells. Science 2016, 353, 58–62.

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Key Research and Development Program of China (No. 2016YFA0202402), the National Natural Science Foundation of China (Nos. 91123005 and 61674108), the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD), and Collaborative Innovation Center of Suzhou Nano Science and Technology.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Tao Song or Baoquan Sun.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, R., Liu, Y., Zou, H. et al. Integrated solar capacitors for energy conversion and storage. Nano Res. 10, 1545–1559 (2017). https://doi.org/10.1007/s12274-017-1450-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-017-1450-5

Keywords

Navigation