Skip to main content
Log in

Dual-mode emission of single-layered graphene quantum dots in confined nanospace: Anti-counterfeiting and sensor applications

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Engineering of the luminescent properties for graphene quantum dots (GQDs) presents two enormous challenges: 1) The bandgap of GQDs is mainly determined by structural defects (size, shape, and the fraction of sp2 and sp3 domains), which results in non-stoichiometric nature; 2) the preparation methods limit the achievement of an accurate chemical structure of GQDs, leading to many controversial explanations over the relationship between the structural defects and bandgaps. Here, single-layered GQDs with an exact structure are obtained by in-situ reaction of intercalated precursors in the confined nanospace of layered double hydroxides (LDHs). Subsequently, the structure-property relationship is uncovered, demonstrating the enhanced fluorescence and activated room temperature phosphorescence of the as-prepared GQDs-LDHs, which originate from synergistic effects: 1) strong confinement provided by the nanospace of LDHs; 2) rich O-containing functional groups on the surface of GQDs resulting from LDH catalysis. Moreover, the colorless nature and dual-emission characteristics of GQDs-LDHs satisfy the preconditions as anti-counterfeiting markers for protecting valuable documents (bank notes, commercial invoices, etc.). Particularly, owing to the low toxicity of GQDs and the edible property of LDHs, the GQDs-LDHs/gelatin capsules could be the new generation of potential green anti-counterfeiting material in the field of food and drugs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Resch-Genger, U.; Grabolle, M.; Cavaliere-Jaricot, S.; Nit-schke, R.; Nann, T. Quantum dots versus organic dyes as fluorescent labels. Nat. Methods 2008, 5, 763–775.

    Article  Google Scholar 

  2. Baker, M. Nanotechnology imaging probes: Smaller and more stable. Nat. Methods 2010, 7, 957–962.

    Article  Google Scholar 

  3. He, X.; Gao, J.; Gambhir, S. S.; Cheng, Z. Near-infrared fluorescent nanoprobes for cancer molecular imaging: Sta-tus and challenges. Trends Mol. Med. 2010, 16, 574–583.

    Article  Google Scholar 

  4. Zheng, X. T.; Ananthanarayanan, A.; Luo, K. Q.; Chen, P. Glowing graphene quantum dots and carbon dots: Prop-erties, syntheses, and biological applications. Small 2015, 11, 1620–1636.

    Article  Google Scholar 

  5. Loh, K. P.; Bao, Q. L.; Eda, G.; Chhowalla, M. Graphene oxide as a chemically tunable platform for optical applications. Nat. Chem. 2010, 2, 1015–1024.

    Article  Google Scholar 

  6. Cao, L.; Meziani, M. J.; Sahu, S.; Sun, Y. P. Photolu-minescence properties of graphene versus other carbon nanomaterials. Acc. Chem. Res. 2013, 46, 171–180.

    Article  Google Scholar 

  7. Yan, J. A.; Xian, L. D.; Chou, M. Y. Structural and electronic properties of oxidized graphene. Phys. Rev. Lett. 2009, 103, 086802.

    Article  Google Scholar 

  8. Li, X. L.; Wang, X. R.; Zhang, L.; Lee, S.; Dai, H. J. Chemically derived, ultrasmooth graphene nanoribbon semiconductors. Science 2008, 319, 1229–1232.

    Article  Google Scholar 

  9. Ponomarenko, L. A.; Schedin, F.; Katsnelson, M. I.; Yang, R.; Hill, E. W.; Novoselov, K. S.; Geim, A. K. Chaotic dirac billiard in graphene quantum dots. Science 2008, 320, 356–358.

    Article  Google Scholar 

  10. Kosynkin, D. V.; Higginbotham, A. L.; Sinitskii, A.; Lomeda, J. R.; Dimiev, A.; Price, B. K.; Tour, J. M. Longitudinal unzipping of carbon nanotubes to form graphene nanoribbons. Nature 2009, 458, 872–876.

    Article  Google Scholar 

  11. Tetsuka, H.; Asahi, R.; Nagoya, A.; Okamoto, K.; Tajima, I.; Ohta, R.; Okamoto, A. Optically tunable amino-functio-nalized graphene quantum dots. Adv. Mater. 2012, 24, 5333–5338.

    Article  Google Scholar 

  12. Wang, Q.; O’ Hare, D. Recent advances in the synthesis and application of layered double hydroxide (LDH) nanosheets. Chem. Rev. 2012, 112, 4124–4155.

    Article  Google Scholar 

  13. Shi, W. Y.; He, S.; Wei, M.; Evans, D. G.; Duan, X. Opti-cal pH sensor with rapid response based on a fluorescein- intercalated layered double hydroxide. Adv. Funct. Mater. 2010, 20, 3856–3863.

    Article  Google Scholar 

  14. Shi, W. Y.; Fu, Y.; Li, Z. X.; Wei, M. Multiple and configurable optical logic systems based on layered double hydroxides and chromophore assemblies. Chem. Commun. 2015, 51, 711–731.

    Article  Google Scholar 

  15. OECD. The Economic Impact of Counterfeiting and Piracy; OECD Publishing: Paris, 2008.

    Google Scholar 

  16. Hu, H. B.; Chen, Q.-W.; Tang, J.; Hu, X.-Y.; Zhou, X.-H. Photonic anti-counterfeiting using structural colors derived from magnetic-responsive photonic crystals with double photonic bandgap heterostructures. J. Mater. Chem. 2012, 22, 11048–11053.

    Article  Google Scholar 

  17. Hu, H. B.; Zhong, H.; Chen, C. L.; Chen, Q. W. Mag-netically responsive photonic watermarks on banknotes. J. Mater. Chem. C 2014, 2, 3695–3702.

    Article  Google Scholar 

  18. Cui, Y.; Hegde, R. S.; Phang, I. Y.; Lee, H. K.; Ling, X. Y. Encoding molecular information in plasmonic nano-structures for anti-counterfeiting applications. Nanoscale 2014, 6, 282–288.

    Article  Google Scholar 

  19. Andres, J.; Hersch, R. D.; Moser, J.-E.; Chauvin, A.-S. A new anti-counterfeiting feature relying on invisible lumi-nescent full color images printed with lanthanide-based inks. Adv. Funct. Mater. 2014, 24, 5029–5036.

    Article  Google Scholar 

  20. Sangeetha, N. M.; Moutet, P.; Lagarde, D.; Sallen, G.; Urbaszek, B.; Marie, X.; Viau, G.; Ressier, L. 3D assembly of upconverting NaYF4 nanocrystals by afm nanoxerography: Creation of anti-counterfeiting microtags. Nanoscale 2013, 5, 9587–9592.

    Article  Google Scholar 

  21. Meruga, J. M.; Baride, A.; Cross, W.; Kellar, J. J.; May, P. S. Red-green-blue printing using luminescence-upconve-rsion inks. J. Mater. Chem. C 2014, 2, 2221–2227.

    Article  Google Scholar 

  22. You, M. L.; Zhong, J. J.; Hong, Y.; Duan, Z. F.; Lin, M.; Xu, F. Inkjet printing of upconversion nanoparticles for anti- counterfeit applications. Nanoscale 2015, 7, 4423–4431.

    Article  Google Scholar 

  23. Huang, C. B.; Lucas, B.; Vervaet, C.; Braeckmans, K.; Van Calenbergh, S.; Karalic, I.; Vandewoestyne, M.; Deforce, D.; Demeester, J.; De Smedt, S. C. Unbreakable codes in electrospun fibers: Digitally encoded polymers to stop medicine counterfeiting. Adv. Mater. 2010, 22, 2657–2662.

    Article  Google Scholar 

  24. BfR Home Page. http://www.bfr.bund.de/de/start.html (acc-essed Dec 30, 2016).

  25. Vatier, J.; Ramdani, A.; Vitré, M. T.; Mignon, M. Antacid activity of calcium carbonate and hydrotalcite tablets. Com-parison between in vitro evaluation using the “artificial stomach-duodenum” model and in vivo pH-metry in hea-lthy volunteers. Arzneimittel-Forschung 1994, 44, 514–518.

    Google Scholar 

  26. Carlino, S.; Hudson, M. J. Thermal intercalation of layered double hydroxides: capric acid into an Mg–Al LDH. J. Mater. Chem. 1995, 5, 1433–1442.

    Article  Google Scholar 

  27. Qu, S. N.; Wang, X. Y.; Lu, Q. P.; Liu, X. Y.; Wang, L. J. A Biocompatible fluorescent ink based on water-soluble luminescent carbon nanodots. Angew. Chem., Int. Ed. 2012, 51, 12215–12218.

    Article  Google Scholar 

  28. Deng, Y. H.; Zhao, D. X.; Chen, X.; Wang, F.; Song, H.; Shen, D. Z. Long lifetime pure organic phosphorescence based on water soluble carbon dots. Chem. Commun 2013, 49, 5751–5753.

    Article  Google Scholar 

  29. Sun, J.; Liu, H. M.; Chen, X.; Evans, D. G.; Yang, W. S.; Duan, X. Carbon nanorings and their enhanced lithium storage properties. Adv. Mater. 2013, 25, 1125–1130.

    Article  Google Scholar 

  30. Campos, L. C.; Manfrinato, V. R.; Sanchez-Yamagishi, J. D.; Kong, J.; Jarillo-Herrero, P. Anisotropic etching and nanoribbon formation in single-layer graphene. Nano Lett. 2009, 9, 2600–2604.

    Article  Google Scholar 

  31. Mattevi, C.; Eda, G.; Agnoli, S.; Miller, S.; Mkhoyan, K. A.; Celik, O.; Mastrogiovanni, D.; Granozzi, G.; Garfunkel, E.; Chhowalla, M. Evolution of electrical, chemical, and structural properties of transparent and conducting chem-ically derived graphene thin films. Adv. Funct. Mater. 2009, 19, 2577–2583.

    Article  Google Scholar 

  32. Kudin, K. N.; Ozbas, B.; Schniepp, H. C.; Prud’homme, R. K.; Aksay, I. A.; Car, R. Raman spectra of graphite oxide and functionalized graphene sheets. Nano Lett. 2008, 8, 36–41.

    Article  Google Scholar 

  33. Qu, S. N.; Liu, X. Y.; Guo, X. Y.; Chu, M. H.; Zhang, L. G.; Shen, D. Z. Amplified spontaneous green emission and lasing emission from carbon nanoparticles. Adv. Funct. Mater. 2014, 24, 2689–2695.

    Article  Google Scholar 

  34. Lin, L. P.; Rong, M. C.; Lu, S. S.; Song, X. H.; Zhong, Y. X.; Yan, J. W.; Wang, Y. R.; Chen, X. A facile synthesis of highly luminescent nitrogen-doped graphene quantum dots for the detection of 2, 4, 6-trinitrophenol in aqueous solution. Nanoscale 2015, 7, 1872–1878.

    Article  Google Scholar 

  35. Zhu, S. J.; Meng, Q. N.; Wang, L.; Zhang, J. H.; Song, Y. B.; Jin, H.; Zhang, K.; Sun, H. C.; Wang, H. Y.; Yang, B. Highly photoluminescent carbon dots for multicolor patterning, sensors, and bioimaging. Angew. Chem., Int. Ed. 2013, 52, 3953–3957.

    Article  Google Scholar 

  36. Deng, Y. H.; Chen, X.; Wang, F.; Zhang, X. A.; Zhao, D. X.; Shen, D. Z. Environment-dependent photon emission from solid state carbon dots and its mechanism. Nanoscale 2014, 6, 10388–10393.

    Article  Google Scholar 

  37. Chen, X. X.; Jin, Q. Q.; Wu, L. Z.; Tung, C.; Tang, X. J. Synthesis and unique photoluminescence properties of nitrogen-rich quantum dots and their applications. Angew. Chem., Int. Ed. 2014, 53, 12542–12547.

    Google Scholar 

  38. Kumar, P.; Dwivedi, J.; Gupta, B. K. Highly luminescent dual mode rare-earth nanorod assisted multi-stage excitable security ink for anti-counterfeiting applications. J. Mater. Chem. C 2014, 2, 10468–10475.

    Article  Google Scholar 

  39. Song, L. Q.; Shi, J. J.; Lu, J.; Lu, C. Structure observation of graphene quantum dots by single-layered formation in layered confinement space. Chem. Sci. 2015, 6, 4846–4850.

    Article  Google Scholar 

  40. Hu, S. L.; Trinchi, A.; Atkin, P.; Cole, I. Tunable photo-luminescence across the entire visible spectrum from car-bon dots excited by white light. Angew. Chem., Int. Ed. 2015, 54, 2970–2974.

    Article  Google Scholar 

  41. Chien, C. T.; Li, S. S.; Lai, W. J.; Yeh, Y. C.; Chen, H. A.; Chen, I. S.; Chen, L. C.; Chen, K. H.; Nemoto, T.; Isoda, S. et al. Tunable photoluminescence from graphene oxide. Angew. Chem., Int. Ed. 2012, 51, 6662–6666.

    Article  Google Scholar 

  42. Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Montgomery, J. A., Jr.; Vreven, T.; Kudin, K. N.; Burant, J. C. et al. Gaussian 03: Revision B.04; Gaussian, Inc.: Pittsburgh, PA, 2003.

    Google Scholar 

  43. Talma, A. G.; Bovenkamp-Bouwman, A. G. Dehydration of itaconic acid. WO 1995006026, March 2, 1995.

    Google Scholar 

  44. Ai, M.; Ohdan, K. Formation of citraconic anhydride by vapor-phase decarboxy-condensation of pyruvic acid. Stud. Surface Sci. Catal. 1996, 101, 201–209.

    Article  Google Scholar 

  45. Galanty, M. G.; Galanti, A. V. Kinetic study of the isom-erization of itaconic anhydride to citraconic anhydride. J. Org. Chem. 1982, 47, 1572–1574.

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Basic Research Program of China (No. 2014CB932103), the National Natural Science Foundation of China (Nos. 21571014, 21575010, and 21656001), Beijing Municipal Natural Science Foundation (No. 2172044), and the Open Research Fund Program of Beijing Key Lab of Plant Resource Research and Development, Beijing Technology and Business University (No. PRRD-2016-YB5).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wenying Shi.

Electronic supplementary material

12274_2017_1820_MOESM1_ESM.pdf

Dual-mode emission of single-layered graphene quantum dots in confined nanospace: Anti-counterfeiting and sensor applications

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bai, L., Xue, N., Zhao, Y. et al. Dual-mode emission of single-layered graphene quantum dots in confined nanospace: Anti-counterfeiting and sensor applications. Nano Res. 11, 2034–2045 (2018). https://doi.org/10.1007/s12274-017-1820-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-017-1820-z

Keywords

Navigation