Skip to main content
Log in

Hydrogen evolution activity enhancement by tuning the oxygen vacancies in self-supported mesoporous spinel oxide nanowire arrays

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

The development of facile strategies to tune the oxygen vacancy (OV) content in transition metal oxides (TMOs) is paramount to obtain low-cost and stable electrocatalysts, but still highly challenging. Taking NiCo2O4 as a model system, we have experimentally established a facile calcination and electrochemical activation (EA) methodology to dramatically increase the concentration of OVs and provide theoretical insight into how the concentration of OVs affects the performance of spinel TMOs towards the electrochemical hydrogen evolution reaction (HER). A self-supported cathode of OV-rich NiCo2O4 nanowire arrays was found to exhibit higher HER activity and better stability in alkaline media than its counterparts with fewer OVs. The electrocatalytic HER activity was in good agreement with the increasing concentration of OVs in the studied samples. A large current density of 360 mA·cm–2 was reached with an overpotential of only 317 mV. Additionally, such a facile strategy was able to efficiently generate OVs in other TMOs (e.g., CoFe2O4 and NiFe2O4) for enhanced HER performance. In addition, our theoretical results suggest that the increasing OV concentration reduces the adsorption energy of water molecules and their dissociation energy barrier on the surface of the catalyst, thus leading to performance improvement of spinel TMOs toward the electrochemical HER. This work may open a new avenue to increase the concentration of OVs in TMOs in a controlled manner for promising applications in a variety of fields.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Lu, S. Q.; Zhuang, Z. B. Electrocatalysts for hydrogen oxidation and evolution reactions. Sci. China Mater. 2016, 59, 217–238.

    Article  Google Scholar 

  2. Jiao, Y.; Zheng, Y.; Jaroniec, M.; Qiao, S. Z. Design of electrocatalysts for oxygen- and hydrogen-involving energy conversion reactions. Chem. Soc. Rev. 2015, 44, 2060–2086.

    Article  Google Scholar 

  3. Vesborg, P. C. K.; Seger, B.; Chorkendorff, I. Recent development in hydrogen evolution reaction catalysts and their practical implementation. J. Phys. Chem. Lett. 2015, 6, 951–957.

    Article  Google Scholar 

  4. Wang, T.; Wang, X. J.; Liu, Y.; Zheng, J.; Li, X. G. A highly efficient and stable biphasic nanocrystalline Ni–Mo–N catalyst for hydrogen evolution in both acidic and alkaline electrolytes. Nano Energy 2016, 22, 111–119.

    Article  Google Scholar 

  5. Zhang, L.; Wu, H. B.; Yan, Y.; Wang, X.; Lou, X. W. Hierarchical MoS2 microboxes constructed by nanosheets with enhanced electrochemical properties for lithium storage and water splitting. Energy Environ. Sci. 2014, 7, 3302–3306.

    Article  Google Scholar 

  6. Feng, L.-L.; Yu, G. T.; Wu, Y. Y.; Li, G.-D.; Li, H.; Sun, Y. H.; Asefa, T.; Chen, W.; Zou, X. X. High-index faceted Ni3S2 nanosheet arrays as highly active and ultrastable electrocatalysts for water splitting. J. Am. Chem. Soc. 2015, 137, 14023–14026.

    Article  Google Scholar 

  7. Li, Y. J.; Zhang, H. C.; Jiang, M.; Kuang, Y.; Sun, X. M.; Duan, X. Ternary NiCoP nanosheet arrays: An excellent bifunctional catalyst for alkaline overall water splitting. Nano Res. 2016, 9, 2251–2259.

    Article  Google Scholar 

  8. Zhang, C.; Huang, Y.; Yu, Y. F.; Zhang, J. F.; Zhuo, S. F.; Zhang, B. Sub-1.1 nm ultrathin porous CoP nanosheets with dominant reactive {200} facets: A high mass activity and efficient electrocatalyst for the hydrogen evolution reaction. Chem. Sci. 2017, 8, 2769–2775.

    Article  Google Scholar 

  9. Xu, Y.; Wu, R.; Zhang, J. F.; Shi, Y. M.; Zhang, B. Anionexchange synthesis of nanoporous FeP nanosheets as electrocatalysts for hydrogen evolution reaction. Chem. Commun. 2013, 49, 6656–6658.

    Article  Google Scholar 

  10. Shi, Y. M.; Zhang, B. Recent advances in transition metal phosphide nanomaterials: Synthesis and applications in hydrogen evolution reaction. Chem. Soc. Rev. 2016, 45, 1529–1541.

    Article  Google Scholar 

  11. Xiao, P.; Chen, W.; Wang, X. A review of phosphide-based materials for electrocatalytic hydrogen evolution. Adv. Energy Mater. 2015, 5, 1500985.

    Article  Google Scholar 

  12. Qin, J. S.; Du, D. Y.; Guan, W.; Bo, X. J.; Li, Y. F.; Guo, L. P.; Su, Z. M.; Wang, Y. Y.; Lan, Y. Q.; Zhou, H. C. Ultrastable polymolybdate-based metal-organic frameworks as highly active electrocatalysts for hydrogen generation from water. J. Am. Chem. Soc. 2015, 137, 7169–7177.

    Article  Google Scholar 

  13. Xia, B. Y.; Yan, Y.; Li, N.; Wu, H. B.; Lou, X. W.; Wang, X. A metal–organic framework-derived bifunctional oxygen electrocatalyst. Nat. Energy 2016, 1, 15006.

    Google Scholar 

  14. Wang, J.; Ge, X. M.; Liu, Z. L.; Thia, L.; Yan, Y.; Xiao, W.; Wang, X. Heterogeneous electrocatalyst with molecular cobalt ions serving as the center of active sites. J. Am. Chem. Soc. 2017, 139, 1878–1884.

    Article  Google Scholar 

  15. Xu, X. M.; Chen, Y. B.; Zhou, W.; Zhu, Z. H.; Su, C.; Liu, M. L.; Shao, Z. P. A perovskite electrocatalyst for efficient hydrogen evolution reaction. Adv. Mater. 2016, 28, 6442–6448.

    Article  Google Scholar 

  16. Petrie, J. R.; Jeen, H.; Barron, S. C.; Meyer, T. L.; Lee, H. N. Enhancing perovskite electrocatalysis through strain tuning of the oxygen deficiency. J. Am. Chem. Soc. 2016, 138, 7252–7255.

    Article  Google Scholar 

  17. Zhao, Y.; Li, X. F.; Yan, B.; Xiong, D. B.; Li, D. J.; Lawes, S.; Sun, X. L. Recent developments and understanding of novel mixed transition-metal oxides as anodes in lithium ion batteries. Adv. Energy Mater. 2016, 6, 1502175.

    Article  Google Scholar 

  18. Li, Y. G.; Hasin, P.; Wu, Y. Y. NixCo3-xO4 nanowire arrays for electrocatalytic oxygen evolution. Adv. Mater. 2010, 22, 1926–1929.

    Article  Google Scholar 

  19. Xie, X.; Lin, L.; Liu, R.-Y.; Jiang, Y.-F.; Zhu, Q.; Xu, A.-W. The synergistic effect of metallic molybdenum dioxide nanoparticle decorated graphene as an active electrocatalyst for an enhanced hydrogen evolution reaction. J. Mater. Chem. A 2015, 3, 8055–8061.

    Article  Google Scholar 

  20. Chen, W.; Wang, H. T.; Li, Y. Z.; Liu, Y. Y.; Sun, J.; Lee, S.; Lee, J.-S.; Cui, Y. In situ electrochemical oxidation tuning of transition metal disulfides to oxides for enhanced water oxidation. ACS Cent. Sci. 2015, 1, 244–251.

    Article  Google Scholar 

  21. Yin, J.; Zhou, P. P.; An, L.; Huang, L.; Shao, C. W.; Wang, J.; Liu, H. Y.; Xi, P. X. Self-supported nanoporous NiCo2O4 nanowires with cobalt-nickel layered oxide nanosheets for overall water splitting. Nanoscale 2016, 8, 1390–1400.

    Article  Google Scholar 

  22. Wang, Y. C.; Zhou, T.; Jiang, K.; Da, P. M.; Peng, Z.; Tang, J.; Kong, B.; Cai, W. B.; Yang, Z. Q.; Zheng, G. F. Reduced mesoporous Co3O4 nanowires as efficient water oxidation electrocatalysts and supercapacitor electrodes. Adv. Energy Mater. 2014, 4, 1400696.

    Article  Google Scholar 

  23. Bøjesen, E. D.; Jensen, K. M. Ø.; Tyrsted, C.; Mamakhel, A.; Andersen, H. L.; Reardon, H.; Chevalier, J.; Dippel, A.-C.; Iversen, B. B. The chemistry of ZnWO4 nanoparticle formation. Chem. Sci. 2016, 7, 6394–6406.

    Article  Google Scholar 

  24. Zhang, L.; Wang, W. Z.; Jiang, D.; Gao, E. P.; Sun, S. M. Photoreduction of CO2 on BiOCl nanoplates with the assistance of photoinduced oxygen vacancies. Nano Res. 2015, 8, 821–831.

    Article  Google Scholar 

  25. Sun, Y. F.; Liu, Q. H.; Gao, S.; Cheng, H.; Lei, F. C.; Sun, Z. H.; Jiang, Y.; Su, H. B.; Wei, S. Q.; Xie, Y. Pits confined in ultrathin cerium(IV) oxide for studying catalytic centers in carbon monoxide oxidation. Nat. Commun. 2013, 4, 2899.

    Google Scholar 

  26. Gao, S.; Jiao, X. C.; Sun, Z. T.; Zhang, W. H.; Sun, Y. F.; Wang, C. M.; Hu, Q. T.; Zu, X. L.; Yang, F.; Yang, S. Y. et al. Ultrathin Co3O4 layers realizing optimized CO2 electroreduction to formate. Angew. Chem., Int. Ed. 2016, 55, 698–702.

    Article  Google Scholar 

  27. Bao, J.; Zhang, X. D.; Fan, B.; Zhang, J. J.; Zhou, M.; Yang, W. L.; Hu, X.; Wang, H.; Pan, B. C.; Xie, Y. Ultrathin spinel-structured nanosheets rich in oxygen deficiencies for enhanced electrocatalytic water oxidation. Angew. Chem., Int. Ed. 2015, 54, 7399–7404.

    Article  Google Scholar 

  28. Cheng, F. Y.; Zhang, T. R.; Zhang, Y.; Du, J.; Han, X. P.; Chen, J. Enhancing electrocatalytic oxygen reduction on MnO2 with vacancies. Angew. Chem., Int. Ed. 2013, 52, 2474–2477.

    Article  Google Scholar 

  29. Song, F.; Schenk, K.; Hu, X. L. A nanoporous oxygen evolution catalyst synthesized by selective electrochemical etching of perovskite hydroxide CoSn(OH)6 nanocubes. Energ. Environ. Sci. 2016, 9, 473–477.

    Google Scholar 

  30. Zhu, C. Z.; Fu, S. F.; Du, D.; Lin, Y. H. Facilely tuning porous NiCo2O4 nanosheets with metal valence-state alteration and abundant oxygen vacancies as robust electrocatalysts towards water splitting. Chemistry 2016, 22, 4000–4007.

    Article  Google Scholar 

  31. Cheng, F. Y.; Chen, J. Lithium-air batteries: Something from nothing. Nat. Chem. 2012, 4, 962–963.

    Article  Google Scholar 

  32. Ma, T. Y.; Zheng, Y.; Dai, S.; Jaroniec, M.; Qiao, S. Z. Mesoporous MnCo2O4 with abundant oxygen vacancy defects as high-performance oxygen reduction catalysts. J. Mater. Chem. A 2014, 2, 8676–8682.

    Article  Google Scholar 

  33. Zhu, Y. L.; Zhou, W.; Yu, J.; Chen, Y. B.; Liu, M. L.; Shao, Z. P. Enhancing electrocatalytic activity of perovskite oxides by tuning cation deficiency for oxygen reduction and evolution reactions. Chem. Mater. 2016, 28, 1691–1697.

    Article  Google Scholar 

  34. Wu, R.; Zhang, J. F.; Shi, Y. M.; Liu, D. L.; Zhang, B. Metallic WO2–carbon mesoporous nanowires as highly efficient electrocatalysts for hydrogen evolution reaction. J. Am. Chem. Soc. 2015, 137, 6983–6986.

    Article  Google Scholar 

  35. Liu, X. J.; Liu, J. F.; Li, Y. P.; Li, Y. J.; Sun, X. M. Au/NiCo2O4 arrays with high activity for water oxidation. ChemCatChem 2014, 6, 2501–2506.

    Article  Google Scholar 

  36. Song, Y.; Zhong, Q.; Tan, W. Y.; Pan, C. Effect of cobaltsubstitution Sr2Fe1.5-xCoxMo0.5O6-d for intermediate temperature symmetrical solid oxide fuel cells fed with H2–H2S. Electrochim. Acta 2014, 139, 13–20.

    Article  Google Scholar 

  37. Zhang, Q.; Xu, Z. F.; Wang, L. F.; Gao, S. H.; Yuan, S. J. Structural and electromagnetic properties driven by oxygen vacancy in Sr2FeMoO6-d double perovskite. J. Alloys Compd. 2015, 649, 1151–1155.

    Article  Google Scholar 

  38. Jiang, S. S.; Liang, F. L.; Zhou, W.; Shao, Z. P. Hierarchical porous cobalt-free perovskite electrode for highly efficient oxygen reduction. J. Mater. Chem. 2012, 22, 16214–16218.

    Article  Google Scholar 

  39. Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865–3868.

    Article  Google Scholar 

  40. Kresse, G.; Furthmü ller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a planewave basis set. Comp. Mater. Sci. 1996, 6, 15–50.

    Article  Google Scholar 

  41. Huang, Z.-F.; Song, J. J.; Li, K.; Tahir, M.; Wang, Y.-T.; Pan, L.; Wang, L.; Zhang, X. W.; Zou, J.-J. Hollow cobaltbased bimetallic sulfide polyhedra for efficient all-pH-value electrochemical and photocatalytic hydrogen evolution. J. Am. Chem. Soc. 2016, 138, 1359–1365.

    Article  Google Scholar 

  42. Grimme, S.; Antony, J.; Ehrlich, S.; Krieg, H. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J. Chem. Phys. 2010, 132, 154104.

    Article  Google Scholar 

  43. Henkelman, G.; Uberuaga, B. P.; Jónsson, H. A climbing image nudged elastic band method for finding saddle points and minimum energy paths. J. Chem. Phys. 2000, 113, 9901.

    Article  Google Scholar 

  44. Gao, X. H.; Zhang, H. X.; Li, Q. G.; Yu, X. G.; Hong, Z. L.; Zhang, X. W.; Liang, C. D.; Lin, Z. Hierarchical NiCo2O4 hollow microcuboids as bifunctional electrocatalysts for overall water-splitting. Angew. Chem., Int. Ed. 2016, 55, 6290–6294.

    Article  Google Scholar 

  45. Jin, H. Y.; Wang, J.; Su, D. F.; Wei, Z. Z.; Pang, Z. F.; Wang, Y. In situ cobalt–cobalt oxide/N-doped carbon hybrids as superior bifunctional electrocatalysts for hydrogen and oxygen evolution. J. Am. Chem. Soc. 2015, 137, 2688–2694.

    Article  Google Scholar 

  46. Wang, H. T.; Lee, H.-W.; Deng, Y.; Lu, Z. Y.; Hsu, P.-C.; Liu, Y. Y.; Lin, D. C.; Cui, Y. Bifunctional non-noble metal oxide nanoparticle electrocatalysts through lithium-induced conversion for overall water splitting. Nat. Commun. 2015, 6, 7261.

    Article  Google Scholar 

  47. Yan, X. D.; Tian, L. H.; He, M.; Chen, X. B. Threedimensional crystalline/amorphous Co/Co3O4 core/shell nanosheets as efficient electrocatalysts for the hydrogen evolution reaction. Nano Lett. 2015, 15, 6015–6021.

    Article  Google Scholar 

  48. Feng, J.-X.; Ding, L.-X.; Ye, S.-H.; He, X.-J.; Xu, H.; Tong, Y.-X.; Li, G.-R. Co(OH)2@PANI hybrid nanosheets with 3D networks as high-performance electrocatalysts for hydrogen evolution reaction. Adv. Mater. 2015, 27, 7051–7057.

    Article  Google Scholar 

  49. Golvano-Escobal, I.; Suriñach, S.; Baró, M. D.; Pané, S.; Sort, J.; Pellicer, E. Electrodeposition of sizeable and compositionally tunable rhodium-iron nanoparticles and their activity toward hydrogen evolution reaction. Electrochim. Acta 2016, 194, 263–275.

    Article  Google Scholar 

  50. Shen, L. F.; Che, Q.; Li, H. S.; Zhang, X. G. Mesoporous NiCo2O4 nanowire arrays grown on carbon textiles as binderfree flexible electrodes for energy storage. Adv. Funct. Mater. 2014, 24, 2630–2637.

    Article  Google Scholar 

  51. Sun, Y. F.; Gao, S.; Lei, F. C.; Liu, J. W.; Liang, L.; Xie, Y. Atomically-thin non-layered cobalt oxide porous sheets for highly efficient oxygen-evolving electrocatalysts. Chem. Sci. 2014, 5, 3976–3982.

    Article  Google Scholar 

  52. Liang, L.; Li, K.; Xiao, C.; Fan, S. J.; Liu, J.; Zhang, W. S.; Xu, W. H.; Tong, W.; Liao, J. Y.; Zhou, Y. Y. et al. Vacancy associates-rich ultrathin nanosheets for high performance and flexible nonvolatile memory device. J. Am. Chem. Soc. 2015, 137, 3102–3108.

    Article  Google Scholar 

  53. Lu, X.-F.; Gu, L.-F.; Wang, J.-W.; Wu, J.-X.; Liao, P.-Q.; Li, G.-R. Bimetal-organic framework derived CoFe2O4/C porous hybrid nanorod arrays as high-performance electrocatalysts for oxygen evolution reaction. Adv. Mater. 2017, 29, 1604437.

    Article  Google Scholar 

  54. Pan, Y.-X.; Sun, Z.-Q.; Cong, H.-P.; Men, Y.-L.; Xin, S.; Song, J.; Yu, S.-H. Photocatalytic CO2 reduction highly enhanced by oxygen vacancies on Pt-nanoparticle-dispersed gallium oxide. Nano Res. 2016, 9, 1689–1700.

    Article  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (No. 21422104) and the Key Project of Natural Science Foundation of Tianjin City (No. 16JCZDJC30600).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bin Zhang.

Electronic supplementary material

12274_2017_1670_MOESM1_ESM.pdf

Hydrogen evolution activity enhancement by tuning the oxygen vacancies in self-supported mesoporous spinel oxide nanowire arrays

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, D., Zhang, C., Yu, Y. et al. Hydrogen evolution activity enhancement by tuning the oxygen vacancies in self-supported mesoporous spinel oxide nanowire arrays. Nano Res. 11, 603–613 (2018). https://doi.org/10.1007/s12274-017-1670-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-017-1670-8

Keywords

Navigation