Skip to main content

Advertisement

Log in

Decoration of cobalt/iron oxide nanoparticles on N-doped carbon nanosheets: Electrochemical performances for lithium-ion batteries

  • Research Article
  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

Cobalt/iron oxide nanoparticles (CFO/NPs) were fabricated with a facile solid combustion method and decorated on polyaniline-derived porous N-doped carbon nanosheets. The N-doped carbon nanosheets provide a pathway for charge transfer and act as defensive layers to avoid the agglomeration of nanoparticles. The decoration of CFO nanoparticles on porous N-doped carbon nanosheets (CFO/NC) typically leads to hybrid material that displays an exceptionally high electrochemical performance for Li-ion batteries (LIBs) with excellent diffusion of electrolyte ions and ensures fast Li+/e transport. The initial discharge capacity reaches up to 1270 mAh g−1 (1.65 mAh cm−2) at a current density of 500 mA g−1 (0.65 mA cm− 2). Furthermore, it also exhibits an exceptionally high specific capacity of 635 mAh g−1 at a high current density of 500 mA g−1 (500 mA g−1) after long cycling (250 cycles) and a remarkable rate capability with 93% capacity retention. These excellent electrochemical characteristics demonstrate that CFO/NC is a promising anode material for LIBs.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Goodenough JB, Park K-S (2013) The Li-Ion rechargeable battery: a perspective. J Am Chem Soc 135:1167–1176

    CAS  PubMed  Google Scholar 

  2. Panwar NL, Kaushik S, C, Kothari S (2011) Role of renewable energy sources in environmental protection: a review. Renew Sustain Energy Rev 15:1513–1524

    Google Scholar 

  3. Li J, Aslam MK, Chen C (2018) One-pot hydrothermal synthesis of porous α-Ni(OH)2/C composites and its application in Ni/Zn alkaline rechargeable battery. J Electrochem Soc 165:A910–A917

    CAS  Google Scholar 

  4. Li S, Cen Y, Xiang Q, Aslam MK, Hu B, Li W, Tang Y, Yu Q, Liu Y, Chen C (2019) Vanadium dioxide–reduced graphene oxide binary host as an efficient polysulfide plague for high-performance lithium–sulfur batteries. J Mater Chem A. https://doi.org/10.1039/C8TA10422K

    Article  Google Scholar 

  5. Zhou Y, Liu Y, Zhao W, Wang H, Li B, Zhou X, Shen H (2015) Controlled synthesis of series NixCo3–xO4 products: morphological evolution towards quasi-single-crystal structure for high-performance and stable lithium-ion batteries. Sci Rep 5:11584

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Huang G, Zhang F, Zhang L, Du X, Wang J, Wang L (2014) Hierarchical NiFe2O4/Fe2O3 nanotubes derived from metal organic frameworks for superior lithium ion battery anodes. J Mater Chem A 2:8048–8053

    CAS  Google Scholar 

  7. Sun S, Wen Z, Jin J, Cui Y, Lu Y (2013) Synthesis of ordered mesoporous CuCo2O4 with different textures as anode material for lithium ion battery. Microporous Mesoporous Mater 169:242–247

    CAS  Google Scholar 

  8. Song X, Ru Q, Zhang B, Hu S, An B (2014) Flake-by-flake ZnCo2O4 as a high capacity anode material for lithium-ion battery. J Alloys Compd 585:518–522

    CAS  Google Scholar 

  9. Zheng F, Zhu D, Chen Q (2014) Facile fabrication of porous NixCo3–xO4 nanosheets with enhanced electrochemical performance as anode materials for Li-ion batteries. ACS Appl Mater Interfaces 6:9256–9264

    CAS  PubMed  Google Scholar 

  10. Mohamed SG, Chen C-J, Chen CK, Hu S-F, Liu R-S (2014) High-performance lithium-ion battery and symmetric supercapacitors based on FeCo2O4 nanoflakes electrodes. ACS Appl Mater Interfaces 6:22701–22708

    CAS  PubMed  Google Scholar 

  11. Guo H, Li T, Chen W, Liu L, Yang X, Wang Y, Guo Y (2014) General design of hollow porous CoFe2O4 nanocubes from metal-organic frameworks with extraordinary lithium storage. Nanoscale 6:15168–15174

    CAS  PubMed  Google Scholar 

  12. Yang G, Xu X, Yan W, Yang H, Ding S (2014) Single-spinneret electrospinning fabrication of CoMn2O4 hollow nanofibers with excellent performance in lithium-ion batteries. Electrochim Acta 137:462–469

    CAS  Google Scholar 

  13. Zhang J, Liang J, Zhu Y, Wei D, Fan L, Qian Y (2014) Synthesis of Co2SnO4 hollow cubes encapsulated in graphene as high capacity anode materials for lithium-ion batteries. J Mater Chem A 2:2728–2734

    CAS  Google Scholar 

  14. Fu X, Chen D, Wang M, Yang Y, Wu Q, Ma J, Zhao X (2014) Synthesis of porous CoFe2O4 octahedral structures and studies on electrochemical Li storage behavior. Electrochim Acta 116:164–169

    CAS  Google Scholar 

  15. Aslam MK, Shah SSA, Li S, Chen C (2018) Kinetically controlled synthesis of MOF nanostructures: single-holed hollow core–shell ZnCoS@Co9S8/NC for ultra-high performance lithium-ion batteries. J Mater Chem A 6:14083–14090

    CAS  Google Scholar 

  16. Yang X, Wang X, Zhang Z (2005) Electrochemical properties of submicron cobalt ferrite spinel through a co-precipitation method. J Cryst Growth 277:467–470

    CAS  Google Scholar 

  17. Lavela P, Tirado JL (2007) CoFe2O4 and NiFe2O4 synthesized by sol–gel procedures for their use as anode materials for Li ion batteries. J Power Sources 172:379–387

    CAS  Google Scholar 

  18. Ding Y, Yang Y, Shao H (2012) Synthesis and characterization of nanostructured CuFe2O4 anode material for lithium ion battery. Solid State Ionics 217:27–33

    CAS  Google Scholar 

  19. Torad NL, Salunkhe RR, Li Y, Hamoudi H, Imura M, Sakka Y, Hu C-C, Yamauchi Y (2014) Electric double-layer capacitors based on highly graphitized nanoporous carbons derived from ZIF-67. Chem Eur J 20:7895–7900

    CAS  PubMed  Google Scholar 

  20. Liu Y, Jiang H, Zhu Y, Yang X, Li C (2016) Transition metals (Fe, Co, and Ni) encapsulated in nitrogen-doped carbon nanotubes as bi-functional catalysts for oxygen electrode reactions. J Mater Chem A 4:1694–1701

    CAS  Google Scholar 

  21. Liu B, Shioyama H, Akita T, Xu Q (2008) Metal-organic framework as a template for porous carbon synthesis. J Am Chem Soc 130:5390–5391

    CAS  PubMed  Google Scholar 

  22. Sun J-K, Xu Q (2014) Functional materials derived from open framework templates/precursors: synthesis and applications. Energy Environ Sci 7:2071–2100

    CAS  Google Scholar 

  23. Bhattacharyya S, Konkena B, Jayaramulu K, Schuhmann W, Maji TK (2017) Synthesis of nano-porous carbon and nitrogen doped carbon dots from an anionic MOF: a trace cobalt metal residue in carbon dots promotes electrocatalytic ORR activity. J Mater Chem A 5:13573–13580

    CAS  Google Scholar 

  24. Liu J, Xiao J, Zeng X, Dong P, Zhao J, Zhang Y, Li X (2017) Combustion synthesized macroporous structure MFe2O4 (M = Zn, Co) as anode materials with excellent electrochemical performance for lithium ion batteries. J Alloys Compd 699:401–407

    CAS  Google Scholar 

  25. Sharifi I, Shokrollahi H, Doroodmand MM, Safi R (2012) Magnetic and structural studies on CoFe2O4 nanoparticles synthesized by co-precipitation, normal micelles and reverse micelles methods. J Magn Magn Mater 324:1854–1861

    CAS  Google Scholar 

  26. Marco JF, Gancedo JR, Gracia M, Gautier JL, Ríos E, Berry FJ (2000) Characterization of the nickel cobaltite, NiCo2O4, prepared by several methods: an XRD, XANES, EXAFS, and XPS study. J Solid State Chem 153:74–81

    CAS  Google Scholar 

  27. Xia W, Mahmood A, Zou R, Xu Q (2015) Metal-organic frameworks and their derived nanostructures for electrochemical energy storage and conversion. Energy Environ Sci 8:1837–1866

    CAS  Google Scholar 

  28. Tang C, Wang H-F, Chen X, Li B-Q, Hou T-Z, Zhang B, Zhang Q, Titirici M-M, Wei F (2016) Topological defects in metal-free nanocarbon for oxygen electrocatalysis. Adv Mater 28:6845–6851

    CAS  PubMed  Google Scholar 

  29. Liu Y, Shen Y, Sun L, Li J, Liu C, Ren W, Li F, Gao L, Chen J, Liu F, Sun Y, Tang N, Cheng H-M, Du Y (2016) Elemental superdoping of graphene and carbon nanotubes. Nat Commun 7:10921

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Amiinu IS, Liu X, Pu Z, Li W, Li Q, Zhang J, Tang H, Zhang H, Mu S (2018) From 3D ZIF nanocrystals to Co–Nx/C nanorod array electrocatalysts for ORR, OER, and Zn–Air batteries. Adv Funct Mater 28:1704638

    Google Scholar 

  31. Rai AK, Gim J, Thi TV, Ahn D, Cho SJ, Kim J (2014) High rate capability and long cycle stability of Co3O4/CoFe2O4 nanocomposite as an anode material for high-performance secondary lithium ion batteries. J Phys Chem C 118:11234–11243

    CAS  Google Scholar 

  32. Shi W, Zhu J, Rui X, Cao X, Chen C, Zhang H, Hng HH, Yan Q (2012) Controlled synthesis of carbon-coated cobalt sulfide nanostructures in oil phase with enhanced Li storage performances. ACS Appl Mater Interfaces 4:2999–3006

    CAS  PubMed  Google Scholar 

  33. Wang Y, Wu J, Tang Y, Lü X, Yang C, Qin M, Huang F, Li X, Zhang X (2012) Phase-controlled synthesis of cobalt sulfides for lithium ion batteries. ACS Appl Mater Interfaces 4:4246–4250

    CAS  PubMed  Google Scholar 

  34. Xing Z, Ju Z, Yang J, Xu H, Qian Y (2013) One-step solid state reaction to selectively fabricate cubic and tetragonal CuFe2O4 anode material for high power lithium ion batteries. Electrochim Acta 102:51–57

    CAS  Google Scholar 

  35. Mao J, Hou X, Wang X, Hu S, Xiang L (2015) The cubic aggregated CoFe2O4 nanoparticle anode material for lithium ion battery with good performance. Mater Lett 161:652–655

    CAS  Google Scholar 

  36. Xie Q, Li F, Guo H, Wang L, Chen Y, Yue G, Peng D-L (2013) Template-free synthesis of amorphous double-shelled zinc–cobalt citrate hollow microspheres and their transformation to crystalline ZnCo2O4 microspheres. ACS Appl Mater Interfaces 5:5508–5517

    CAS  PubMed  Google Scholar 

  37. Xie Q, Zeng D, Ma Y, Lin L, Wang L, Peng D-L (2015) Synthesis of ZnO–ZnCo2O4 hybrid hollow microspheres with excellent lithium storage properties. Electrochim Acta 169:283–290

    CAS  Google Scholar 

  38. Duan L, Wang Y, Wang L, Zhang F, Wang L (2015) Mesoporous MFe2O4 (M = Mn, Co, and Ni) for anode materials of lithium-ion batteries: synthesis and electrochemical properties. Mater Res Bull 61:195–200

    CAS  Google Scholar 

  39. Wang B, Li S, Wu X, Li B, Liu J, Yu M (2015) Nanocrystal-constructed mesoporous CoFe2O4 nanowire arrays aligned on flexible carbon fabric as integrated anodes with enhanced lithium storage properties. Phys Chem Chem Phys 17:21476–21484

    CAS  PubMed  Google Scholar 

  40. Wang J, Yang G, Wang L, Yan W, Wei W (2017) C@CoFe2O4 fiber-in-tube mesoporous nanostructure: formation mechanism and high electrochemical performance as an anode for lithium-ion batteries. J Alloys Compd 693:110–117

    CAS  Google Scholar 

  41. Zhou J, Yang T, Mao M, Ren W, Li Q (2015) Enhanced electrochemical performance of hierarchical CoFe2O4/MnO2/C nanotubes as anode materials for lithium-ion batteries. J Mater Chem A 3:12328–12333

    CAS  Google Scholar 

  42. Xiong QQ, Tu JP, Shi SJ, Liu XY, Wang XL, Gu CD (2014) Ascorbic acid-assisted synthesis of cobalt ferrite (CoFe2O4) hierarchical flower-like microspheres with enhanced lithium storage properties. J Power Sources 256:153–159

    CAS  Google Scholar 

Download references

Acknowledgements

This work is supported by National Natural Science Foundation of China (Grant No. 21273292).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Muhammad Kashif Aslam or ChangGuo Chen.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aslam, M.K., Shah, S.S.A., Najam, T. et al. Decoration of cobalt/iron oxide nanoparticles on N-doped carbon nanosheets: Electrochemical performances for lithium-ion batteries. J Appl Electrochem 49, 433–442 (2019). https://doi.org/10.1007/s10800-019-01291-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10800-019-01291-5

Keywords

Navigation