Skip to main content
Log in

Monodispersed Pt nanoparticles on reduced graphene oxide by a non-noble metal sacrificial approach for hydrolytic dehydrogenation of ammonia borane

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Downsizing noble metal nanoparticles, such as Pt, is an essential goal for many catalytic reactions. A non-noble metal sacrificial approach was used to immobilize monodispersed Pt nanoparticles (NPs) with a mean size of 1.2 nm on reduced graphene oxide (RGO). ZnO co-precipitated with Pt NPs and subsequently sacrificed by acid etching impedes the diffusion of Pt atoms onto the primary Pt particles and also their aggregation during the reduction of precursors. The resulting ultrafine Pt nanoparticles exhibit high activity (a turnover frequency of 284 min−1 at 298 K) in the hydrolytic dehydrogenation of ammonia borane. The non-noble metal sacrificial approach is demonstrated as a general approach to synthesize well-dispersed noble metal NPs for catalysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Wu, B. R.; Zheng, N. F. Surface and interface control of noble metal nanocrystals for catalytic and electrocatalytic applications. Nano Today 2013, 8, 168–197.

    Article  Google Scholar 

  2. Jung, N.; Chung, D. Y.; Ryu, J.; Yoo, S. J.; Sung, Y. E. Pt-based nanoarchitecture and catalyst design for fuel cell applications. Nano Today 2014, 9, 433–456.

    Article  Google Scholar 

  3. Tiwari, J. N.; Nath, K.; Kumar, S.; Tiwari, R. N.; Kemp, K. C.; Le, N. H.; Youn, D. H.; Lee, J. S.; Kim, K. S. Stable platinum nanoclusters on genomic DNA–graphene oxide with a high oxygen reduction reaction activity. Nat. Commun. 2013, 4, 2221.

    Article  Google Scholar 

  4. Qiao, B. T.; Wang, A. Q.; Yang, X. F.; Allard, L. F.; Jiang, Z.; Cui, Y. T.; Liu, J. Y.; Li, J.; Zhang, T. Singleatom catalysis of CO oxidation using Pt1/FeO x . Nat. Chem. 2011, 3, 634–641.

    Article  Google Scholar 

  5. Zhang, M.; Zhao, Y. H.; Yan, L.; Peltier, R.; Hui, W. L.; Yao, X.; Cui, Y. L.; Chen, X. F.; Sun, H. Y.; Wang, Z. K. Interfacial engineering of bimetallic Ag/Pt nanoparticles on reduced graphene oxide matrix for enhanced antimicrobial activity. ACS Appl. Mater. Interfaces 2016, 8, 8834–8840.

    Article  Google Scholar 

  6. Goia, D. V.; Matijevic, E. Preparation of monodispersed metal particles. New J. Chem. 1998, 22, 1203–1215.

    Article  Google Scholar 

  7. Thanh, N. T. K.; Maclean, N.; Mahiddine, S. Mechanisms of nucleation and growth of nanoparticles in solution. Chem. Rev. 2014, 114, 7610–7630.

    Article  Google Scholar 

  8. Zhang, P. F.; Zhu, H. Y.; Dai, S. Porous carbon supports: Recent advances with various morphologies and compositions. ChemCatChem 2015, 7, 2788–2805.

    Article  Google Scholar 

  9. Meek, S. T.; Greathouse, J. A.; Allendorf, M. D. Metalorganic frameworks: A rapidly growing class of versatile nanoporous materials. Adv. Mater. 2011, 23, 249–267.

    Article  Google Scholar 

  10. Chen, Y.; Zhu, Q.-L.; Tsumori, N.; Xu, Q. Immobilizing highly catalytically active noble metal nanoparticles on reduced graphene oxide: A non-noble metal sacrificial approach. J. Am. Chem. Soc. 2015, 137, 106–109.

    Article  Google Scholar 

  11. Tan, C. L.; Huang, X.; Zhang, H. Synthesis and applications of graphene-based noble metal nanostructures. Mater. Today 2013, 16, 29–36.

    Article  Google Scholar 

  12. Liu, M. M.; Zhang, R. Z.; Chen, W. Graphene-supported nanoelectrocatalysts for fuel cells: Synthesis, properties, and applications. Chem. Rev. 2014, 114, 5117–5160.

    Article  Google Scholar 

  13. Chen, Y.; Yan, C. L.; Schmidt, O. G. Strain-driven formation of multilayer graphene/GeO2 tubular nanostructures as highcapacity and very long-life anodes for lithium-ion batteries. Adv. Energy Mater. 2013, 3, 1269–1274.

    Article  Google Scholar 

  14. Liu, P. X.; Zhao, Y.; Qin, R. X.; Mo, S. G.; Chen, G. X.; Gu, L.; Chevrier, D. M.; Zhang, P.; Guo, Q.; Zang, D. D. et al. Photochemical route for synthesizing atomically dispersed palladium catalysts. Science 2016, 352, 797–800.

    Article  Google Scholar 

  15. Wu, S. L.; Liu, J.; Liang, D. W.; Sun, H. M.; Ye, Y. X.; Tian, Z. F.; Liang, C. H. Photo-excited in situ loading of Pt clusters onto rGO immobilized SnO2 with excellent catalytic performance toward methanol oxidation. Nano Energy 2016, 26, 699–707.

    Article  Google Scholar 

  16. Wu, S. L.; Liu, J.; Tian, Z. F.; Cai, Y. Y.; Ye, Y. X.; Yuan, Q. L.; Liang, C. H. Highly dispersed ultrafine Pt nanoparticles on reduced graphene oxide nanosheets: In situ sacrificial template synthesis and superior electrocatalytic performance for methanol oxidation. ACS Appl. Mater. Interfaces 2015, 7, 22935–22940.

    Article  Google Scholar 

  17. Jiang, H.-L.; Xu, Q. Catalytic hydrolysis of ammonia borane for chemical hydrogen storage. Catal. Today 2011, 170, 56–63.

    Article  Google Scholar 

  18. Yadav, M.; Xu, Q. Liquid-phase chemical hydrogen storage materials. Energy Environ. Sci. 2012, 5, 9698–9725.

    Article  Google Scholar 

  19. Li, J.; Zhu, Q.-L.; Xu, Q. Highly active AuCo alloy nanoparticles encapsulated in the pores of metal-organic frameworks for hydrolytic dehydrogenation of ammonia borane. Chem. Commun. 2014, 50, 5899–5901.

    Article  Google Scholar 

  20. Aranishi, K.; Jiang, H.-L.; Akita, T.; Haruta, M.; Xu, Q. One-step synthesis of magnetically recyclable Au/Co/Fe triple-layered core–shell nanoparticles as highly efficient catalysts for the hydrolytic dehydrogenation of ammonia borane. Nano Res. 2011, 4, 1233–1241.

    Article  Google Scholar 

  21. Metin, Ö.; Özkar, S.; Sun, S. H. Monodisperse nickel nanoparticles supported on SiO2 as an effective catalyst for the hydrolysis of ammonia-borane. Nano Res. 2010, 3, 676–684.

    Article  Google Scholar 

  22. Zhou, L. M.; Zhang, T. R.; Tao, Z. L.; Chen, J. Ni nanoparticles supported on carbon as efficient catalysts for the hydrolysis of ammonia borane. Nano Res. 2014, 7, 774–781.

    Article  Google Scholar 

  23. Hummers, W. S.; Offeman, R. E. Preparation of graphitic oxide. J. Am. Chem. Soc. 1958, 80, 1339.

    Article  Google Scholar 

  24. Chen, Y.; Zhang, X.; Yu, P.; Ma, Y. W. Stable dispersions of graphene and highly conducting graphene films: A new approach to creating colloids of graphene monolayers. Chem. Commun. 2009, 4527–4529.

    Google Scholar 

  25. Hong, Y.; Wang, J.; Yuan, B.; Liu, Y.; Bian, L.; Jia, M.; Jiang, F. Template free synthesis of ZnO spindles and flowers via hydrothermal route. Adv. Appl. Ceram. 2014, 113, 178–183.

    Article  Google Scholar 

  26. Chen, Y.; Zhang, X.; Zhang, D. C.; Yu, P.; Ma, Y. W. High performance supercapacitors based on reduced graphene oxide in aqueous and ionic liquid electrolytes. Carbon 2011, 49, 573–580.

    Article  Google Scholar 

  27. Tsai, C.-H.; Hung, C.-I.; Yang, C.-F.; Houng, M.-P. Hydrogen peroxide treatment on ZnO substrates to investigate the characteristics of Pt and Pt oxide Schottky contacts. Appl. Surf. Sci. 2010, 257, 610–615.

    Article  Google Scholar 

  28. Aijaz, A.; Karkamkar, A.; Choi, Y. J.; Tsumori, N.; Rö nnebro, E.; Autrey, T.; Shioyama, H.; Xu, Q. Immobilizing highly catalytically active Pt nanoparticles inside the pores of metal–organic framework: A double solvents approach. J. Am. Chem. Soc. 2012, 134, 13926–13929.

    Article  Google Scholar 

  29. Chandra, M.; Xu, Q. Room temperature hydrogen generation from aqueous ammonia-borane using noble metal nanoclusters as highly active catalysts. J. Power Sources 2007, 168, 135–142.

    Article  Google Scholar 

  30. Wang, X.; Liu, D. P.; Song, S. Y.; Zhang, H. J. Synthesis of highly active Pt-CeO2 hybrids with tunable secondary nanostructures for the catalytic hydrolysis of ammonia borane. Chem. Commun. 2012, 48, 10207–10209.

    Article  Google Scholar 

  31. Khalily, M. A.; Eren, H.; Akbayrak, S.; Susapto, H. H.; Biyikli, N.; Özkar, S.; Guler, M. O. Facile synthesis of threedimensional Pt-TiO2 nano-networks: A highly active catalyst for the hydrolytic dehydrogenation of ammonia–borane. Angew. Chem., Int. Ed. 2016, 55, 12257–12261.

    Article  Google Scholar 

  32. Zhu, Q.-L.; Li, J.; Xu, Q. Immobilizing metal nanoparticles to metal–organic frameworks with size and location control for optimizing catalytic performance. J. Am. Chem. Soc. 2013, 135, 10210–10213.

    Article  Google Scholar 

  33. Chandra, M.; Xu, Q. A high-performance hydrogen generation system: Transition metal-catalyzed dissociation and hydrolysis of ammonia–borane. J. Power Sources 2006, 156, 190–194.

    Article  Google Scholar 

  34. Yang, X. J.; Cheng, F. Y.; Liang, J.; Tao Z. L.; Chen J. Carbon-supported Ni1–x @Ptx (x = 0.32, 0.43, 0.60, 0.67, and 0.80) core–shell nanoparticles as catalysts for hydrogen generation from hydrolysis of ammonia borane. Int. J. Hydrogen Energy 2011, 36, 1984–1990.

    Article  Google Scholar 

  35. Chen, W. Y.; Ji, J.; Feng, X.; Duan, X. Z.; Qian, G.; Li, P.; Zhou, X. G.; Chen, D.; Yuan, W. K. Mechanistic insight into size-dependent activity and durability in Pt/CNT catalyzed hydrolytic dehydrogenation of ammonia borane. J. Am. Chem. Soc. 2014, 136, 16736–16739.

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank Ms. Jun Li for XPS and Dr. Takeyuki Uchida for TEM measurements and AIST and METI for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qiang Xu.

Electronic supplementary material

12274_2017_1593_MOESM1_ESM.pdf

Monodispersed Pt nanoparticles on reduced graphene oxide by a non-noble metal sacrificial approach for hydrolytic dehydrogenation of ammonia borane

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, Y., Yang, X., Kitta, M. et al. Monodispersed Pt nanoparticles on reduced graphene oxide by a non-noble metal sacrificial approach for hydrolytic dehydrogenation of ammonia borane. Nano Res. 10, 3811–3816 (2017). https://doi.org/10.1007/s12274-017-1593-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-017-1593-4

Keywords

Navigation