Skip to main content
Log in

Generic synthesis and versatile applications of molecularly organic–inorganic hybrid mesoporous organosilica nanoparticles with asymmetric Janus topologies and structures

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Precise control over the morphology, nanostructure, composition, and particle size of molecularly organic–inorganic hybrid mesoporous organosilica nanoparticles (MONs) still remains a major challenge, which severely restricts their broad applications. In this work, an efficient bridged organic group-determined growth strategy has been proposed for the facile synthesis of highly dispersed and uniform MONs with multifarious Janus morphologies, nanostructures, organic–inorganic hybrid compositions, and particle sizes, which can be easily controlled simply by varying the bridged organic groups and the concentration of bis-silylated organosilica precursors used in the synthesis. In addition, the formation mechanism of Janus MONs determined by the bridged organic group has been discussed. Based on the specific structures, compositions, and asymmetric morphologies, all the synthesized Janus MONs with hollow structures (JHMONs) demonstrate excellent performances in nanomedicine as desirable drug carriers with high drug-loading efficiencies/capacities, pH-responsive drug releasing, and enhanced therapeutic efficiencies, as attractive contrast-enhanced contrast agents for ultrasound imaging, and as excellent bilirubin adsorbents with noticeably high adsorption capacities and high blood compatibilities. The developed versatile synthetic strategy and the obtained JHMONs are extremely important in the development and applications of MONs, particularly in the areas of nanoscience and nanotechnology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Lai, N. C.; Lin, C.; Ku, P.; Chang, L. L.; Liao, K. W.; Lin, W. T.; Yang, C. M. Hollow mesoporous Ia3d silica nanospheres with singleunit-cell-thick shell: Spontaneous formation and drug delivery application. Nano Res. 2014, 7, 1439–1448.

    Article  Google Scholar 

  2. Chen, D. Y.; Mei, X.; Ji, G.; Lu, M. H.; Xie, J. P.; Lu, J. M.; Lee, J. Y. Reversible lithium-ion storage in silver-treated nanoscale hollow porous silicon particles. Angew. Chem., Int. Ed. 2012, 51, 2409–2413.

    Article  Google Scholar 

  3. Gao, F.; Botella, P.; Corma, A.; Blesa, J.; Dong, L. Monodispersed mesoporous silica nanoparticles with very large pores for enhanced adsorption and release of DNA. J. Phys. Chem. B 2009, 113, 1796–1804.

    Article  Google Scholar 

  4. Chen, J. C.; Zhang, R. Y.; Han, L.; Tu, B.; Zhao, D. Y. One-pot synthesis of thermally stable gold@mesoporous silica core–shell nanospheres with catalytic activity. Nano Res. 2013, 6, 871–879.

    Article  Google Scholar 

  5. Pan, L. M.; He, Q. J.; Liu, J.; Chen, Y.; Ma, M.; Zhang, L. L.; Shi, J. L. Nuclear-targeted drug delivery of TAT peptideconjugated monodisperse mesoporous silica nanoparticles. J. Am. Chem. Soc. 2012, 134, 5722–5725.

    Article  Google Scholar 

  6. Kim, T.; Momin, E.; Choi, J.; Yuan, K.; Zaidi, H.; Kim, J.; Park, M.; Lee, N.; McMahon, M. T.; Quinones-Hinojosa, A. et al. Mesoporous silica-coated hollow manganese oxide nanoparticles as positive T 1 contrast agents for labeling and MRI tracking of adipose-derived mesenchymal stem cells. J. Am. Chem. Soc. 2011, 133, 2955–2961.

    Article  Google Scholar 

  7. Wang, X.; Chen, H. R.; Chen, Y.; Ma, M.; Zhang, K.; Li, F. Q.; Zheng, Y. Y.; Zeng, D. P.; Wang, Q.; Shi, J. L. Perfluorohexane-encapsulated mesoporous silica nanocapsules as enhancement agents for highly efficient high intensity focused ultrasound (HIFU). Adv. Mater. 2012, 24, 785–791.

    Article  Google Scholar 

  8. Luo, G. F.; Chen, W. H.; Jia, H. Z.; Sun, Y. X.; Cheng, H.; Zhuo, R. X.; Zhang, X. Z. An indicator-guided photo-controlled drug delivery system based on mesoporous silica/gold nanocomposites. Nano Res. 2015, 8, 1893–1905.

    Article  Google Scholar 

  9. Chen, Y.; Chu, C.; Zhou, Y. C.; Ru, Y. F.; Chen, H. R.; Chen, F.; He, Q. J.; Zhang, Y. L.; Zhang, L. L.; Shi, J. L. Reversible pore-structure evolution in hollow silica nanocapsules: Large pores for siRNA delivery and nanoparticle collecting. Small 2011, 7, 2935–2944.

    Article  Google Scholar 

  10. Fan, W. P.; Shen, B.; Bu, W. B.; Chen, F.; Zhao, K. L.; Zhang, S. J.; Zhou, L. P.; Peng, W. J.; Xiao, Q. F.; Xing, H. Y. et al. Rattle-structured multifunctional nanotheranostics for synergetic chemo-/radiotherapy and simultaneous magnetic/ luminescent dual-mode imaging. J. Am. Chem. Soc. 2013, 135, 6494–6503.

    Article  Google Scholar 

  11. Yang, Y. N.; Yu, M. H.; Song, H.; Wang, Y.; Yu, C. Z. Preparation of fluorescent mesoporous hollow silica-fullerene nanoparticles via selective etching for combined chemotherapy and photodynamic therapy. Nanoscale 2015, 7, 11894–11898.

    Article  Google Scholar 

  12. Terentyuk, G.; Panfilova, E.; Khanadeev, V.; Chumakov, D.; Genina, E.; Bashkatov, A.; Tuchin, V.; Bucharskaya, A.; Maslyakova, G.; Khlebtsov, N. et al. Gold nanorods with a hematoporphyrin-loaded silica shell for dual-modality photodynamic and photothermal treatment of tumors in vivo. Nano Res. 2014, 7, 325–337.

    Article  Google Scholar 

  13. Zhang, K.; Chen, H. R.; Zhou, X. X.; Gong, Y.; Zhang, G. B.; Wang, X.; Chen, Y.; Shi, J. L. Unconventional Pd nanoparticles' growth induced by a competitive effect between temperaturedependent coordination and reduction of grafted amino ligands for Heck reaction. J. Mater. Chem. A 2014, 2, 1515–1523.

    Article  Google Scholar 

  14. Chen, Y.; Chen, H. R.; Shi, J. L. In vivo bio-safety evaluations and diagnostic/therapeutic applications of chemically designed mesoporous silica nanoparticles. Adv. Mater. 2013, 25, 3144–3176.

    Article  Google Scholar 

  15. Lin, Y.-S.; Haynes, C. L. Impacts of mesoporous silica nanoparticle size, pore ordering, and pore integrity on hemolytic activity. J. Am. Chem. Soc. 2010, 132, 4834–4842.

    Article  Google Scholar 

  16. Rosenholm, J. M.; Mamaeva, V.; Sahlgren, C.; Lindén, M. Nanoparticles in targeted cancer therapy: Mesoporous silica nanoparticles entering preclinical development stage. Nanomedicine 2012, 7, 111–120.

    Article  Google Scholar 

  17. Zhang, L. X.; Zhu, M.; Guo, L. M.; Li, L.; Shi, J. L. Bilirubin adsorption property of mesoporous silica and amine-grafted mesoporous silica. Nano-Micro Lett. 2009, 1, 14–18.

    Article  Google Scholar 

  18. Zhang, L. X.; Zhang, W. H.; Shi, J. L.; Hua, Z. L.; Li, Y. S.; Yan, J. A New Thioether functionalized organic-inorganic mesoporous composite as a highly selective and capacious Hg2+ adsorbent. Chem. Commun. 2003, 210–211.

    Google Scholar 

  19. Mikhaylov, G.; Mikac, U.; Magaeva, A. A.; Itin, V. I.; Naiden, E. P.; Psakhye, I.; Babes, L.; Reinheckel, T.; Peters, C.; Zeiser, R. et al. Ferri-liposomes as an MRI-visible drug-delivery system for targeting tumours and their microenvironment. Nat. Nanotechnol. 2011, 6, 594–602.

    Article  Google Scholar 

  20. Cabral, H.; Matsumoto, Y.; Mizuno, K.; Chen, Q.; Murakami, M.; Kimura, M.; Terada, Y.; Kano, M. R.; Miyazono, K.; Uesaka, M. et al. Accumulation of sub-100 nm polymeric micelles in poorly permeable tumours depends on size. Nat. Nanotechnol. 2011, 6, 815–823.

    Article  Google Scholar 

  21. Du, X.; Li, X. Y.; Xiong, L.; Zhang, X. J.; Kleitz, F.; Qiao, S. Z. Mesoporous silica nanoparticles with organo-bridged silsesquioxane framework as innovative platforms for bioimaging and therapeutic agent delivery. Biomaterials 2016, 91, 90–127.

    Article  Google Scholar 

  22. Wang, W. D.; Lofgreen, J. E.; Ozin, G. A. Why PMO? Towards functionality and utility of periodic mesoporous organosilicas. Small 2010, 6, 2634–2642.

    Article  Google Scholar 

  23. Modak, A.; Mondal, J.; Bhaumik, A. Pd-grafted periodic mesoporous organosilica: An efficient heterogeneous catalyst for hiyama and sonogashira couplings, and cyanation reactions. Green Chem. 2012, 14, 2840–2855.

    Article  Google Scholar 

  24. Yang, Y.; Zhang, W.; Zhang, Y.; Zheng, A. M.; Sun, H.; Li, X. S.; Liu, S. Y.; Zhang, P. F.; Zhang, X. A single Au nanoparticle anchored inside the porous shell of periodic mesoporous organosilica hollow spheres. Nano Res. 2015, 8, 3404–3411.

    Article  Google Scholar 

  25. Rekha, P.; Sharma, V.; Mohanty, P. Synthesis of cyclophosphazene bridged mesoporous organosilicas for CO2 capture and Cr (VI) removal. Micropor. Mesopor. Mater. 2016, 219, 93–102.

    Article  Google Scholar 

  26. Rekha, P.; Muhammad, R.; Mohanty, P. Sonochemical synthesis of cyclophosphazene bridged mesoporous organosilicas and their application in methyl orange, congo red and Cr(VI) removal. RSC Adv. 2015, 5, 67690–67699.

    Article  Google Scholar 

  27. Kim, D. J.; Chung, J. S.; Ahn, W. S.; Kang, G. W.; Cheong, W. J. Morphology control of organic–inorganic hybrid mesoporous silica by microwave heating. Chem. Lett. 2004, 33, 422–423.

    Article  Google Scholar 

  28. Rebbin, V.; Schmidt, R.; Fröba, M. Spherical particles of phenylene-bridged periodic mesoporous organosilica for high-performance liquid chromatography. Angew. Chem., Int. Ed. 2006, 45, 5210–5214.

    Article  Google Scholar 

  29. Wu, M. Y.; Chen, Y.; Zhang, L. X.; Li, X. Y.; Cai, X. J.; Du, Y. Y.; Zhang, L. L.; Shi, J. L. A salt-assisted acid etching strategy for hollow mesoporous silica/organosilica for pH-responsive drug and gene co-delivery. J. Mater. Chem. B 2015, 3, 766–775.

    Article  Google Scholar 

  30. Zhou, Z.; Taylor, R. N. K.; Kullmann, S.; Bao, H. X.; Hartmann, M. Mesoporous organosilicas with large cage-like pores for high efficiency immobilization of enzymes. Adv. Mater. 2011, 23, 2627–2632.

    Article  Google Scholar 

  31. Chen, Y.; Shi, J. L. Chemistry of mesoporous organosilica in nanotechnology: Molecularly organic–inorganic hybridization into frameworks. Adv. Mater. 2016, 28, 3235–3272.

    Article  Google Scholar 

  32. Chen, Y.; Xu, P. F.; Chen, H. R.; Li, Y. S.; Bu, W. B.; Shu, Z.; Li, Y. P.; Zhang, J. M.; Zhang, L. X.; Pan, L. M. et al. Colloidal HPMO nanoparticles: Silica-etching chemistry tailoring, topological transformation, and nano-biomedical applications. Adv. Mater. 2013, 25, 3100–3105.

    Article  Google Scholar 

  33. Li, X. M.; Zhou, L.; Wei, Y.; El-Toni, A. M.; Zhang, F.; Zhao, D. Y. Anisotropic growth-induced synthesis of dualcompartment Janus mesoporous silica nanoparticles for bimodal triggered drugs delivery. J. Am. Chem. Soc. 2014, 136, 15086–15092.

    Article  Google Scholar 

  34. Li, X. M.; Zhou, L.; Wei, Y.; El-Toni, A. M.; Zhang, F.; Zhao, D. Y. Anisotropic encapsulation-induced synthesis of asymmetric single-hole mesoporous nanocages. J. Am. Chem. Soc. 2015, 137, 5903–5906.

    Article  Google Scholar 

  35. Fang, X. L.; Chen, C.; Liu, Z. H.; Liu, P. X.; Zheng, N. F. A cationic surfactant assisted selective etching strategy to hollow mesoporous silica spheres. Nanoscale 2011, 3, 1632–1639.

    Article  Google Scholar 

  36. Zou, H. B.; Wang, R. W.; Li, X. X.; Wang, X.; Zeng, S. J.; Ding, S.; Li, L.; Zhang, Z. T.; Qiu, S. L. An organosilanedirected growth-induced etching strategy for preparing hollow/yolk–shell mesoporous organosilica nanospheres with perpendicular mesochannels and amphiphilic frameworks. J. Mater. Chem. A 2014, 2, 12403–12412.

    Article  Google Scholar 

  37. Li, J.; Wei, Y.; Li, W.; Deng, Y. H.; Zhao, D. Y. Magnetic spherical cores partly coated with periodic mesoporous organosilica single crystals. Nanoscale 2012, 4, 1647–1651.

    Article  Google Scholar 

  38. Suteewong, T.; Sai, H.; Hovden, R.; Muller, D.; Bradbury, M. S.; Gruner, S. M.; Wiesner, U. Multicompartment mesoporous silica nanoparticles with branched shapes: An epitaxial growth mechanism. Science 2013, 340, 337–341.

    Article  Google Scholar 

  39. Croissant, J.; Cattoën, X.; Wong Chi Man, M.; Dieudonné, P.; Charnay, C.; Raehm, L.; Durand, J.-O. One-pot construction of multipodal hybrid periodic mesoporous organosilica nanoparticles with crystal-like architectures. Adv. Mater. 2015, 27, 145–149.

    Article  Google Scholar 

  40. Bao, X. Y.; Li, X.; Zhao, X. S. Synthesis of large-pore methylene-bridged periodic mesoporous organosilicas and its implications. J. Phys. Chem. B 2006, 110, 2656–2661.

    Article  Google Scholar 

  41. Brinker, C. J. Hydrolysis and condensation of silicates: Effects on structure. J. Non-Cryst. Solids 1988, 100, 31–50.

    Article  Google Scholar 

  42. Brinker, C. J.; Scherer, G. W. Sol-Gel Science: The Physics and Chemistry of Sol-Gel Processing; Academic Press: San Diego, CA, USA, 1990.

    Google Scholar 

  43. Ujiie, H.; Shimojima, A.; Kuroda, K. Synthesis of colloidal Janus nanoparticles by asymmetric capping of mesoporous silica with phenylsilsesquioxane. Chem. Commun. 2015, 51, 3211–3214.

    Article  Google Scholar 

  44. Chen, Y.; Meng, Q. S.; Wu, M. Y.; Wang, S. G.; Xu, P. F.; Chen, H. R.; Li, Y. P.; Zhang, L. X.; Wang, L. Z.; Shi, J. L. Hollow mesoporous organosilica nanoparticles: A generic intelligent framework-hybridization approach for biomedicine. J. Am. Chem. Soc. 2014, 136, 16326–16334.

    Article  Google Scholar 

  45. Tao, G. J.; Zhang, L. X.; Hua, Z. L.; Chen, Y.; Guo, L. M.; Zhang, J. M.; Shu, Z.; Gao, J. H.; Chen, H. R.; Wu, W. et al. Highly efficient adsorbents based on hierarchically macro/mesoporous carbon monoliths with strong hydrophobicity. Carbon 2014, 66, 547–559.

    Article  Google Scholar 

  46. Gerweck, L. E.; Seetharaman, K. Cellular pH gradient in tumor versus normal tissue: Potential exploitation for the treatment of cancer. Cancer Res. 1996, 56, 1194–1198.

    Google Scholar 

  47. Wei, H. L.; Xu, L.; Ren, J.; Jia, L. Y. Adsorption of bilirubin to magnetic multi-walled carbon nanotubes as a potential application in bound solute dialysis. Colloid. Surf. A 2012, 405, 38–44.

    Article  Google Scholar 

  48. Asano, T.; Tsuru, K.; Hayakawa, S.; Osaka, A. Bilirubin adsorption property of sol–gel-derived titania particles for blood purification therapy. Acta Biomater. 2008, 4, 1067–1072.

    Article  Google Scholar 

  49. Guo, L. M.; Zhang, L. X.; Zhang, J. M.; Zhou, J.; He, Q. J.; Zeng, S. Z.; Cui, X. Z.; Shi, J. L. Hollow mesoporous carbon spheres-an excellent bilirubin adsorbent. Chem. Commun. 2009, 6071–6073.

    Google Scholar 

  50. Chen, Y.; Yin, Q.; Ji, X. F.; Zhang, S. J.; Chen, H. R.; Zheng, Y. Y.; Sun, Y.; Qu, H. Y.; Wang, Z.; Li, Y. P. et al. Manganese oxide-based multifunctionalized mesoporous silica nanoparticles for pH-responsive MRI, ultrasonography and circumvention of MDR in cancer cells. Biomaterials 2012, 33, 7126–7137.

    Article  Google Scholar 

  51. Chen, Y.; Gao, Y.; Chen, H. R.; Zeng, D. P.; Li, Y. P.; Zheng, Y. Y.; Li, F. Q.; Ji, X. F.; Wang, X.; Chen, F. et al. Engineering inorganic nanoemulsions/nanoliposomes by fluoride-silica chemistry for efficient delivery/co-delivery of hydrophobic agents. Adv. Funct. Mater. 2012, 22, 1586–1597.

    Article  Google Scholar 

  52. Ma, Z. F.; Bai, J.; Wang, Y. C.; Jiang, X. E. Impact of shape and pore size of mesoporous silica nanoparticles on serum protein adsorption and RBCs hemolysis. ACS Appl. Mater. Interfaces 2014, 6, 2431–2438.

    Article  Google Scholar 

  53. Teng, Z. G.; Wang, S. J.; Su, X. D.; Chen, G. T.; Liu, Y.; Luo, Z. M.; Luo, W.; Tang, Y. X.; Ju, H. X.; Zhao, D. Y. et al. Facile synthesis of yolk–shell structured inorganic–organic hybrid spheres with ordered radial mesochannels. Adv. Mater. 2014, 26, 3741–3747.

    Article  Google Scholar 

Download references

Acknowledgements

We greatly acknowledge financial support from the National Key Research and Development Program of China (No. 2016YFA0203700), Shanghai Natural Science Foundation (No. 16ZR1440300), the National Natural Science Foundation of China (Nos. 61275208, 51302293, and 51672303), Shanghai Rising-Star Program (No. 14QA1404100), Youth Innovation Promotion Association of the Chinese Academy of Sciences (No. 2013169) and Development Fund for Shanghai Talents (2015).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yu Chen or Long Zhang.

Electronic supplementary material

12274_2017_1592_MOESM1_ESM.pdf

Generic synthesis and versatile applications of molecularly organic–inorganic hybrid mesoporous organosilica nanoparticles with asymmetric Janus topologies and structures

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tao, G., Bai, Z., Chen, Y. et al. Generic synthesis and versatile applications of molecularly organic–inorganic hybrid mesoporous organosilica nanoparticles with asymmetric Janus topologies and structures. Nano Res. 10, 3790–3810 (2017). https://doi.org/10.1007/s12274-017-1592-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-017-1592-5

Keywords

Navigation