Skip to main content
Log in

Amorphous nickel-iron oxides/carbon nanohybrids for an efficient and durable oxygen evolution reaction

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Highly efficient and durable water oxidation electrocatalysts are critically important in a wide range of clean energy technologies, including water electrolyzers and rechargeable metal-air batteries. Here, we report a novel sonochemical approach to synthesize amorphous nickel-iron oxides/carbon nanohybrids with tunable compositions for the oxygen evolution reaction (OER). The sonochemically synthesized amorphous electrocatalysts with optimal composition exhibit a low overpotential of 290 mV at 10 mA·cm−2 and a Tafel slope of 31 mV·decade−1 in a 0.1 M KOH electrolyte, outperforming the benchmark RuO2 catalyst. Meanwhile, these nanohybrids are also highly stable and remain amorphous even after prolonged cycling. In addition to amorphism, sonochemistry endows as-prepared nickel-iron oxides/carbon nanohybrids with a simultaneously formed carbon scaffold and internal Ni(0), which can enhance the stability and activity for the OER. This work demonstrates that sonochemistry is a unique method for synthesizing amorphous metal oxides toward an efficient and durable OER.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Luo, J.; Im, J. H.; Mayer, M. T.; Schreier, M.; Nazeeruddin, M. K.; Park, N. G.; Tilley, S. D.; Fan, H. J.; Gratzel, M. Water photolysis at 12.3% efficiency via perovskite photovoltaics and earth-abundant catalysts. Science 2014, 345, 1593–1596.

    Article  Google Scholar 

  2. Cox, C. R.; Lee, J. Z.; Nocera, D. G.; Buonassisi, T. Tenpercent solar-to-fuel conversion with nonprecious materials. Proc. Natl. Acad. Sci. USA 2014, 111, 14057–14061.

    Article  Google Scholar 

  3. Walter, M. G.; Warren, E. L.; McKone, J. R.; Boettcher, S. W.; Mi, Q. X.; Santori, E. A.; Lewis, N. S. Solar water splitting cells. Chem. Rev. 2010, 110, 6446–6473.

    Article  Google Scholar 

  4. McCrory, C. C. L.; Jung, S.; Peters, J. C.; Jaramillo, T. F. Benchmarking heterogeneous electrocatalysts for the oxygen evolution reaction. J. Am. Chem. Soc. 2013, 135, 16977–16987.

    Article  Google Scholar 

  5. Lee, Y.; Suntivich, J.; May, K. J.; Perry, E. E.; Shao-Horn, Y. Synthesis and activities of rutile IrO2 and RuO2 nanoparticles for oxygen evolution in acid and alkaline solutions. J. Phys. Chem. Lett. 2012, 3, 399–404.

    Article  Google Scholar 

  6. Görlin, M.; Chernev, P.; Ferreira de Araújo, J.; Reier, T.; Dresp, S.; Paul, B.; Krähnert, R.; Dau, H.; Strasser, P. Oxygen evolution reaction dynamics, faradaic charge efficiency, and the active metal redox states of Ni-Fe oxide water splitting electrocatalysts. J. Am. Chem. Soc. 2016, 138, 5603–5614.

    Article  Google Scholar 

  7. Song, F.; Hu, X. L. Exfoliation of layered double hydroxides for enhanced oxygen evolution catalysis. Nat. Commun. 2014, 5, 4477.

    Google Scholar 

  8. Kanan, M. W.; Nocera, D. G. In situ formation of an oxygen-evolving catalyst in neutral water containing phosphate and Co2+. Science 2008, 321, 1072–1075.

    Article  Google Scholar 

  9. Trotochaud, L.; Ranney, J. K.; Williams, K. N.; Boettcher, S. W. Solution-cast metal oxide thin film electrocatalysts for oxygen evolution. J. Am. Chem. Soc. 2012, 134, 17253–17261.

    Article  Google Scholar 

  10. Hunter, B. M.; Blakemore, J. D.; Deimund, M.; Gray, H. B.; Winkler, J. R.; Müller, A. M. Highly active mixed-metal nanosheet water oxidation catalysts made by pulsed-laser ablation in liquids. J. Am. Chem. Soc. 2014, 136, 13118–13121.

    Article  Google Scholar 

  11. Gong, M.; Dai, H. J. A mini review of NiFe-based materials as highly active oxygen evolution reaction electrocatalysts. Nano Res. 2015, 8, 23–39.

    Article  Google Scholar 

  12. Wang, L. X.; Geng, J.; Wang, W. H.; Yuan, C.; Kuai, L.; Geng, B. Y. Facile synthesis of Fe/Ni bimetallic oxide solidsolution nanoparticles with superior electrocatalytic activity for oxygen evolution reaction. Nano Res. 2015, 8, 3815–3822.

    Article  Google Scholar 

  13. Fominykh, K.; Chernev, P.; Zaharieva, I.; Sicklinger, J.; Stefanic, G.; Döblinger, M.; Müller, A.; Pokharel, A.; Böcklein, S.; Scheu, C. et al. Iron-doped nickel oxide nanocrystals as highly efficient electrocatalysts for alkaline water splitting. ACS Nano 2015, 9, 5180–5188.

    Article  Google Scholar 

  14. Zhao, Y. F.; Jia, X. D.; Chen, G. B.; Shang, L.; Waterhouse, G. I. N.; Wu, L. Z.; Tung, C. H.; O'Hare, D.; Zhang, T. R. Ultrafine NiO nanosheets stabilized by TiO2 from monolayer NiTi-LDH precursors: An active water oxidation electrocatalyst. J. Am. Chem. Soc. 2016, 138, 6517–6524.

    Article  Google Scholar 

  15. Zhang, B.; Zheng, X. L.; Voznyy, O.; Comin, R.; Bajdich, M.; García-Melchor, M.; Han, L. L.; Xu, J. X.; Liu, M.; Zheng, L. R. et al. Homogeneously dispersed multimetal oxygenevolving catalysts. Science 2016, 352, 333–337.

    Article  Google Scholar 

  16. Lu, X. Y.; Zhao, C. Electrodeposition of hierarchically structured three-dimensional nickel-iron electrodes for efficient oxygen evolution at high current densities. Nat. Commun. 2015, 6, 6616.

    Article  Google Scholar 

  17. Indra, A.; Menezes, P. W.; Sahraie, N. R.; Bergmann, A.; Das, C.; Tallarida, M.; Schmeiβer, D.; Strasser, P.; Driess, M. Unification of catalytic water oxidation and oxygen reduction reactions: Amorphous beat crystalline cobalt iron oxides. J. Am. Chem. Soc. 2014, 136, 17530–17536.

    Article  Google Scholar 

  18. Smith, R. D. L.; Prévot, M. S.; Fagan, R. D.; Zhang, Z. P.; Sedach, P. A.; Siu, M. K. J.; Trudel, S.; Berlinguette, C. P. Photochemical route for accessing amorphous metal oxide materials for water oxidation catalysis. Science 2013, 340, 60–63.

    Article  Google Scholar 

  19. Bang, J. H.; Suslick, K. S. Applications of ultrasound to the synthesis of nanostructured materials. Adv. Mater. 2010, 22, 1039–1059.

    Article  Google Scholar 

  20. Xu, H. X.; Zeiger, B. W.; Suslick, K. S. Sonochemical synthesis of nanomaterials. Chem. Soc. Rev. 2013, 42, 2555–2567.

    Article  Google Scholar 

  21. Shafi, K. V. P. M.; Gedanken, A.; Goldfarb, R. B.; Felner, I. Sonochemical preparation of nanosized amorphous Fe-Ni alloys. J. Appl. Phys. 1997, 81, 6901–6905.

    Article  Google Scholar 

  22. Louie, M. W.; Bell, A. T. An investigation of thin-film Ni-Fe oxide catalysts for the electrochemical evolution of oxygen. J. Am. Chem. Soc. 2013, 135, 12329–12337.

    Article  Google Scholar 

  23. Gong, M.; Li, Y. G.; Wang, H. L.; Liang, Y. Y.; Wu, J. Z.; Zhou, J. G.; Wang, J.; Regier, T.; Wei, F.; Dai, H. J. An advanced Ni-Fe layered double hydroxide electrocatalyst for water oxidation. J. Am. Chem. Soc. 2013, 135, 8452–8455.

    Article  Google Scholar 

  24. Long, X.; Li, J. K.; Xiao, S.; Yan, K. Y.; Wang, Z. L.; Chen, H. N.; Yang, S. H. A strongly coupled graphene and FeNi double hydroxide hybrid as an excellent electrocatalyst for the oxygen evolution reaction. Angew. Chem., Int. Ed. 2014, 53, 7584–7588.

    Article  Google Scholar 

  25. Tang, C.; Wang, H. S.; Wang, H. F.; Zhang, Q.; Tian, G. L.; Nie, J. Q.; Wei, F. Spatially confined hybridization of nanometer-sized NiFe hydroxides into nitrogen-doped graphene frameworks leading to superior oxygen evolution reactivity. Adv. Mater. 2015, 27, 4516–4522.

    Article  Google Scholar 

  26. Chen, S.; Duan, J. J.; Ran, J. R.; Qiao, S. Z. Paper-based N-doped carbon films for enhanced oxygen evolution electrocatalysis. Adv. Sci. 2015, 2, 1400015.

    Article  Google Scholar 

  27. Swierk, J. R.; Klaus, S.; Trotochaud, L.; Bell, A. T.; Tilley, T. D. Electrochemical study of the energetics of the oxygen evolution reaction at nickel iron (oxy)hydroxide catalysts. J. Phys. Chem. C 2015, 119, 19022–19029.

    Article  Google Scholar 

  28. Qiu, Y.; Xin, L.; Li, W. Z. Electrocatalytic oxygen evolution over supported small amorphous Ni-Fe nanoparticles in alkaline electrolyte. Langmuir 2014, 30, 7893–7901.

    Article  Google Scholar 

  29. Friebel, D.; Louie, M. W.; Bajdich, M.; Sanwald, K. E.; Cai, Y.; Wise, A. M.; Cheng, M. J.; Sokaras, D.; Weng, T. C.; Alonso-Mori, R. et al. Identification of highly active Fe sites in (Ni, Fe)OOH for electrocatalytic water splitting. J. Am. Chem. Soc. 2015, 137, 1305–1313.

    Article  Google Scholar 

  30. Trotochaud, L.; Young, S. L.; Ranney, J. K.; Boettcher, S. W. Nickel-iron oxyhydroxide oxygen-evolution electrocatalysts: The role of intentional and incidental iron incorporation. J. Am. Chem. Soc. 2014, 136, 6744–6753.

    Article  Google Scholar 

  31. Smith, R. D. L.; Prévot, M. S.; Fagan, R. D.; Trudel, S.; Berlinguette, C. P. Water oxidation catalysis: Electrocatalytic response to metal stoichiometry in amorphous metal oxide films containing iron, cobalt, and nickel. J. Am. Chem. Soc. 2013, 135, 11580–11586.

    Article  Google Scholar 

  32. Bates, M. K.; Jia, Q. Y.; Doan, H.; Liang, W. T.; Mukerjee, S. Charge-transfer effects in Ni–Fe and Ni–Fe–Co mixed-metal oxides for the alkaline oxygen evolution reaction. ACS Catal. 2016, 6, 155–161.

    Article  Google Scholar 

  33. Zhu, J. J.; Li, H. L.; Zhong, L. Y.; Xiao, P.; Xu, X. L.; Yang, X. G.; Zhao, Z.; Li, J. L. Perovskite oxides: Preparation, characterizations, and applications in heterogeneous catalysis. ACS Catal. 2014, 4, 2917–2940.

    Article  Google Scholar 

  34. Merino, N. A.; Barbero, B. P.; Eloy, P.; Cadús, L. E. La1−x CaxCoO3 perovskite-type oxides: Identification of the surface oxygen species by XPS. Appl. Surf. Sci. 2006, 253, 1489–1493.

    Article  Google Scholar 

  35. Xu, L.; Jiang, Q. Q.; Xiao, Z. H.; Li, X. Y.; Huo, J.; Wang, S. Y.; Dai, L. M. Plasma-engraved Co3O4 nanosheets with oxygen vacancies and high surface area for the oxygen evolution reaction. Angew. Chem., Int. Ed. 2016, 55, 5277–5281.

    Article  Google Scholar 

  36. Zhu, Y. L.; Zhou, W.; Chen, Y. B.; Yu, J.; Liu, M. L.; Shao, Z. P. A high-performance electrocatalyst for oxygen evolution reaction: LiCo0.8Fe0.2O2. Adv. Mater. 2015, 27, 7150–7155.

    Article  Google Scholar 

  37. Cui, B.; Lin, H.; Li, J.-B.; Li, X.; Yang, J.; Tao, J. Core–ring structured NiCo2O4 nanoplatelets: Synthesis, characterization, and electrocatalytic applications. Adv. Funct. Mater. 2008, 18, 1440–1447.

    Article  Google Scholar 

  38. Hasan, M.; Newcomb, S. B.; Razeeb, K. M. Porous core/shell Ni@NiO/Pt hybrid nanowire arrays as a high efficient electrocatalyst for alkaline direct ethanol fuel cells. J. Electrochem. Soc. 2012, 159, F203–F209.

    Article  Google Scholar 

  39. Ressler, T. J. WinXAS: A program for X-ray absorption spectroscopy data analysis under MS-Windows. J. Synchrotron Rad. 1998, 5, 118–122.

    Article  Google Scholar 

  40. Ankudinow, A. L.; Ravel, B.; Rehr, J. J.; Conradson, S. D. Real-space multiple-scattering calculation and interpretation of X-ray-absorption near-edge structure. Phys. Rev. B 1998, 58, 7565–7576.

    Article  Google Scholar 

Download references

Acknowledgements

We thank the Photoemission Endstation (BL10B) in National Synchrotron Radiation Laboratory (NSRL) for collecting X-ray data. This work was supported by the National Key Basic Research Program of China (Nos. 2015CB351903 and 2014CB848900), the National Natural Science Foundation of China (Nos. 21474095, 11574280, 11605201, and U1532112), CAS Key Research Program of Frontier Sciences (No. QYZDB-SSW-SLH018), and the Fundamental Research Funds for the Central Universities.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hangxun Xu or Li Song.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, B., Chen, S., Tian, J. et al. Amorphous nickel-iron oxides/carbon nanohybrids for an efficient and durable oxygen evolution reaction. Nano Res. 10, 3629–3637 (2017). https://doi.org/10.1007/s12274-017-1572-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-017-1572-9

Keywords

Navigation