Skip to main content
Log in

Self-powered pressure sensor for ultra-wide range pressure detection

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

The next generation of sensors should be self-powered, maintenance-free, precise, and have wide-ranging sensing abilities. Despite extensive research and development in the field of pressure sensors, the sensitivity of most pressure sensors declines significantly at higher pressures, such that they are not able to detect a wide range of pressures with a uniformly high sensitivity. In this work, we demonstrate a single-electrode triboelectric pressure sensor, which can detect a wide range of pressures from 0.05 to 600 kPa with a high degree of sensitivity across the entire range by utilizing the synergistic effects of the piezoelectric polarization and triboelectric surface charges of self-polarized polyvinyldifluoride-trifluoroethylene (P(VDF-TrFE)) sponge. Taking into account both this wide pressure range and the sensitivity, this device exhibits the best performance relative to that of previously reported self-powered pressure sensors. This achievement facilitates wide-range pressure detection for a broad spectrum of applications, ranging from simple human touch, sensor networks, smart robotics, and sports applications, thus paving the way forward for the realization of next-generation sensing devices. Moreover, this work addresses the critical issue of saturation pressure in triboelectric nanogenerators and provides insights into the role of the surface charge on a piezoelectric polymer when used in a triboelectric nanogenerator.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Rogers, J. A. Electronics: A diverse printed future. Nature 2010, 468, 177–178.

    Article  Google Scholar 

  2. Kim, D. H.; Lu, N. S.; Ma, R.; Kim, Y. S.; Kim, R. H.; Wang, S. D.; Wu, J.; Won, S. M.; Tao, H.; Islam, A. et al. Epidermal electronics. Science 2011, 333, 838–843.

    Article  Google Scholar 

  3. Xu, S.; Qin, Y.; Xu, C.; Wei, Y. G.; Yang, R. S.; Wang, Z. L. Self-powered nanowire devices. Nat. Nanotechnol. 2010, 5, 366–373.

    Article  Google Scholar 

  4. Tian, H.; Shu, Y.; Wang, X. F.; Mohammad, M. A.; Bie, Z.; Xie, Q. Y.; Li, C.; Mi, W. T.; Yang, Y.; Ren, T. L. A graphene-based resistive pressure sensor with record-high sensitivity in a wide pressure range. Sci. Rep. 2015, 5, 8603.

    Google Scholar 

  5. Zang, Y. P.; Zhang, F. J.; Di, C. A.; Zhu, D. B. Advances of flexible pressure sensors toward artificial intelligence and health care applications. Mater. Horiz. 2015, 2, 140–156.

    Article  Google Scholar 

  6. Lipomi, D. J.; Vosgueritchian, M.; Tee, B. C. K.; Hellstrom, S. L.; Lee, J. A.; Fox, C. H.; Bao, Z. Skin-like pressure and strain sensors based on transparent elastic films of carbon nanotubes. Nat. Nanotechnol. 2011, 6, 788–792.

    Article  Google Scholar 

  7. Schwartz, G.; Tee, B. C. K.; Mei, J. G.; Appleton, A. L.; Kim, D. H.; Wang, H. L.; Bao, Z. Flexible polymer transistors with high pressure sensitivity for application in electronic skin and health monitoring. Nat. Commun. 2013, 4, 1859.

    Article  Google Scholar 

  8. Mannsfeld, S. C. B.; Tee, B. C. K.; Stoltenberg, R. M.; Chen, C. V. H. H.; Barman, S.; Muir, B. V. O.; Sokolov, A. N.; Reese, C.; Bao, Z. Highly sensitive flexible pressure sensors with microstructured rubber dielectric layers. Nat. Mater. 2010, 9, 859–864.

    Article  Google Scholar 

  9. Park, J.; Lee, Y.; Hong, J.; Ha, M.; Jung, Y. D.; Lim, H.; Kim, S. Y.; Ko, H. Giant tunneling piezoresistance of composite elastomers with interlocked microdome arrays for ultrasensitive and multimodal electronic skins. ACS Nano 2014, 8, 4689–4697.

    Article  Google Scholar 

  10. Yamada, T.; Hayamizu, Y.; Yamamoto, Y.; Yomogida, Y.; Izadi-Najafabadi, A.; Futaba, D. N.; Hata, K. A stretchable carbon nanotube strain sensor for human-motion detection. Nat. Nanotechnol. 2011, 6, 296–301.

    Google Scholar 

  11. Yao, H. B.; Ge, J.; Wang, C. F.; Wang, X.; Hu, W.; Zheng, Z. J.; Ni, Y.; Yu, S. H. A flexible and highly pressuresensitive graphene–polyurethane sponge based on fractured microstructure design. Adv. Mater. 2013, 25, 6692–6698.

    Article  Google Scholar 

  12. Lee, J. H.; Yoon, H. J.; Kim, T. Y.; Gupta, M. K.; Lee, J. H.; Seung, W.; Ryu, H.; Kim, S. W. Micropatterned P(VDF-TrFE) film-based piezoelectric nanogenerators for highly sensitive self-powered pressure sensors. Adv. Funct. Mater. 2015, 25, 3203–3209.

    Article  Google Scholar 

  13. Chun, J.; Lee, K. Y.; Kang, C. Y.; Kim, M. W.; Kim, S. W.; Baik, J. M. Embossed hollow hemisphere-based piezoelectric nanogenerator and highly responsive pressure sensor. Adv. Funct. Mater. 2014, 24, 2038–2043.

    Article  Google Scholar 

  14. Wu, W. Z.; Wen, X. N.; Wang, Z. L. Taxel-addressable matrix of vertical-nanowire piezotronic transistors for active and adaptive tactile imaging. Science 2013, 340, 952–957.

    Article  Google Scholar 

  15. Chun, J.; Kang, N. R.; Kim, J. Y.; Noh, M. S.; Kang, C. Y.; Choi, D.; Kim, S. W.; Wang, Z. L.; Baik, J. M. Highly anisotropic power generation in piezoelectric hemispheres composed stretchable composite film for self-powered motion sensor. Nano Energy 2015, 11, 1–10.

    Article  Google Scholar 

  16. Hu, Y. F.; Xu, C.; Zhang, Y.; Lin, L.; Snyder, R. L.; Wang, Z. L. A nanogenerator for energy harvesting from a rotating tire and its application as a self-powered pressure/speed sensor. Adv. Mater. 2011, 23, 4068–4071.

    Article  Google Scholar 

  17. Persano, L.; Dagdeviren, C.; Su, Y. W.; Zhang, Y. H.; Girardo, S.; Pisignano, D.; Huang, Y. G.; Rogers, J. A. High performance piezoelectric devices based on aligned arrays of nanofibers of poly(vinylidenefluoride-co-trifluoroethylene). Nat. Commun. 2013, 4, 1633.

    Article  Google Scholar 

  18. Lin, L.; Xie, Y. N.; Wang, S. H.; Wu, W. Z.; Niu, S. M.; Wen, X. N.; Wang, Z. L. Triboelectric active sensor array for self-powered static and dynamic pressure detection and tactile imaging. ACS Nano 2013, 7, 8266–8274.

    Article  Google Scholar 

  19. Fan, F.-R.; Lin, L.; Zhu, G.; Wu, W. Z.; Zhang, R.; Wang, Z. L. Transparent triboelectric nanogenerators and selfpowered pressure sensors based on micropatterned plastic films. Nano Lett. 2012, 12, 3109–3114.

    Article  Google Scholar 

  20. Lee, K. Y.; Yoon, H. J.; Jiang, T.; Wen, X. N.; Seung, W.; Kim, S. W.; Wang, Z. L. Fully packaged self-powered triboelectric pressure sensor using hemispheres-array. Adv. Energy Mater. 2016, 6, 1502566.

    Article  Google Scholar 

  21. Zhu, G.; Yang, W. Q.; Zhang, T. J.; Jing, Q. S.; Chen, J.; Zhou, Y. S.; Bai, P.; Wang, Z. L. Self-powered, ultrasensitive, flexible tactile sensors based on contact electrification. Nano Lett. 2014, 14, 3208–3213.

    Article  Google Scholar 

  22. Wang, X. D.; Zhang, H. L.; Dong, L.; Han, X.; Du, W. M.; Zhai, J. Y.; Pan, C. F.; Wang, Z. L. Self-powered highresolution and pressure-sensitive triboelectric sensor matrix for real-time tactile mapping. Adv. Mater. 2016, 28, 2896–2903.

    Article  Google Scholar 

  23. Bai, P.; Zhu, G.; Jing, Q. S.; Yang, J.; Chen, J.; Su, Y. J.; Ma, J. S.; Zhang, G.; Wang, Z. L. Membrane-based selfpowered triboelectric sensors for pressure change detection and its uses in security surveillance and healthcare monitoring. Adv. Funct. Mater. 2014, 24, 5807–5813.

    Article  Google Scholar 

  24. Mandal, D.; Yoon, S.; Kim, K. J. Origin of piezoelectricity in an electrospun poly(vinylidene fluoride-trifluoroethylene) nanofiber web-based nanogenerator and nano-pressure sensor. Macromol. Rapid Commun. 2011, 32, 831–837.

    Article  Google Scholar 

  25. Sharma, T.; Je, S. S.; Gill, B.; Zhang, J. X. J. Patterning piezoelectric thin film PVDF–TrFE based pressure sensor for catheter application. Sensor. Actuat. A: Phys. 2012, 177, 87–92.

    Article  Google Scholar 

  26. Tamang, A.; Ghosh, S. K.; Garain, S.; Alam, M. M.; Haeberle, J.; Henkel, K.; Schmeißser, D.; Mandal, D. DNAassisted ß-phase nucleation and alignment of molecular dipoles in PVDF film: A realization of self-poled bioinspired flexible polymer nanogenerator for portable electronic devices. ACS Appl. Mater. Interfaces, 2015, 7, 16143–16147.

    Article  Google Scholar 

  27. Cho, Y.; Park, J. B.; Kim, B. S.; Lee, J.; Hong, W. K.; Park, I. K.; Jang, J. E.; Sohn, J. I.; Cha, S.; Kim, J. M. Enhanced energy harvesting based on surface morphology engineering of P(VDF-TrFE) film. Nano Energy 2015, 16, 524–532.

    Article  Google Scholar 

  28. Li, M. Y.; Katsouras, I.; Piliego, C.; Glasser, G.; Lieberwirth, I.; Blom, P. W. M.; de Leeuw, D. M. Controlling the microstructure of poly(vinylidene-fluoride) (PVDF) thin films for microelectronics. J. Mater. Chem. C 2013, 1, 7695–7702.

    Article  Google Scholar 

  29. García-Gutiérrez, M. C.; Linares, A.; Martín-Fabiani, I.; Hernández, J. J.; Soccio, M.; Rueda, D. R.; Ezquerra, T. A.; Reynolds, M. Understanding crystallization features of P(VDF-TrFE) copolymers under confinement to optimize ferroelectricity in nanostructures. Nanoscale 2013, 5, 6006–6012.

    Article  Google Scholar 

  30. Li, X.; Lim, Y. F.; Yao, K.; Tay, F. E. H.; Seah, K. H. P(VDF-TrFE) ferroelectric nanotube array for high energy density capacitor applications. Phys. Chem. Chem. Phys. 2013, 15, 515–520.

    Google Scholar 

  31. Pi, Z. Y.; Zhang, J. W.; Wen, C. Y.; Zhang, Z. B.; Wu, D. P. Flexible piezoelectric nanogenerator made of poly(vinylidenefluoride-co-trifluoroethylene) (PVDF-TrFE) thin film. Nano Energy 2014, 7, 33–41.

    Article  Google Scholar 

  32. Kusuma, D. Y.; Nguyen, C. A.; Lee, P. S. Enhanced ferroelectric switching characteristics of P(VDF-TrFE) for organic memory devices. J. Phys. Chem. B 2010, 114, 13289–13293.

    Article  Google Scholar 

  33. Whiter, R. A.; Narayan, V.; Kar-Narayan, S. A scalable nanogenerator based on self-poled piezoelectric polymer nanowires with high energy conversion efficiency. Adv. Energy Mater. 2014, 4, 1400519.

    Article  Google Scholar 

  34. Wang, X. D.; Song, J. H.; Liu, J.; Wang, Z. L. Directcurrent nanogenerator driven by ultrasonic waves. Science 2007, 316, 102–105.

    Article  Google Scholar 

  35. Chang, C.; Tran, V. H.; Wang, J. B.; Fuh, Y. K.; Lin, L. W. Direct-write piezoelectric polymeric nanogenerator with high energy conversion efficiency. Nano Lett. 2010, 10, 726–731.

    Article  Google Scholar 

  36. Nguyen, V.; Zhu, R.; Yang, R. S. Environmental effects on nanogenerators. Nano Energy 2015, 14, 49–61.

    Article  Google Scholar 

  37. Parida, K.; Bhavanasi, V.; Kumar, V.; Wang, J. X.; Lee, P. S. Fast charging self-powered electric double layer capacitor. J. Power Sources 2017, 342, 70–78.

    Article  Google Scholar 

  38. Zhang, A. J.; Bai, H.; Li, L. Breath figure: A natureinspired preparation method for ordered porous films. Chem. Rev. 2015, 115, 9801–9868.

    Article  Google Scholar 

  39. Venault, A.; Chang, Y.; Wang, D. M.; Bouyer, D. A review on polymeric membranes and hydrogels prepared by vaporinduced phase separation process. Polym. Rev. 2013, 53, 568–626.

    Article  Google Scholar 

  40. Jana, S.; Garain, S.; Sen, S.; Mandal, D. The influence of hydrogen bonding on the dielectric constant and the piezoelectric energy harvesting performance of hydrated metal salt mediated PVDF films. Phys. Chem. Chem. Phys. 2015, 17, 17429–17436.

    Article  Google Scholar 

  41. Karan, S. K.; Bera, R.; Paria, S.; Das, A. K.; Maiti, S.; Maitra, A.; Khatua, B. B. An approach to design highly durable piezoelectric nanogenerator based on self-poled PVDF/AlO-rGO flexible nanocomposite with high power density and energy conversion efficiency. Adv. Energy Mater. 2016, 6, 1601016.

    Article  Google Scholar 

  42. Chen, S. T.; Li, X.; Yao, K.; Tay, F. E. H.; Kumar, A.; Zeng, K. Y. Self-polarized ferroelectric PVDF homopolymer ultra-thin films derived from Langmuir–Blodgett deposition. Polymer 2012, 53, 1404–1408.

    Article  Google Scholar 

  43. Garain, S.; Sinha, T. K.; Adhikary, P.; Henkel, K.; Sen, S.; Ram, S.; Sinha, C.; Schmeiß er, D.; Mandal, D. Self-poled transparent and flexible UV light-emitting cerium complex–PVDF composite: A high-performance nanogenerator. ACS Appl. Mater. Interfaces 2015, 7, 1298–1307.

    Article  Google Scholar 

  44. Pardo, L.; Garcí a, A.; Brebø l, K.; Piazza, D.; Galassi, C. Key issues in the characterization of porous PZT based ceramics with morphotropic phase boundary composition. J. Electroceram. 2007, 19, 413–418.

    Article  Google Scholar 

  45. Wang, Z. L.; Lin, L.; Chen, J.; Niu, S.; Zi, Y. Triboelectric Nanogenerators; Springer International Publishing: Switzerland, 2016.

  46. Wang, Z. L.; Chen, J.; Lin, L. Progress in triboelectric nanogenerators as a new energy technology and selfpowered sensors. Energy Environ. Sci. 2015, 8, 2250–2282.

    Article  Google Scholar 

  47. Lee, K. Y.; Gupta, M. K.; Kim, S. W. Transparent flexible stretchable piezoelectric and triboelectric nanogenerators for powering portable electronics. Nano Energy 2015, 14, 139–160.

    Article  Google Scholar 

  48. Wang, Z. L. Triboelectric nanogenerators as new energy technology and self-powered sensors—Principles, problems and perspectives. Faraday Discuss. 2014, 176, 447–458.

    Article  Google Scholar 

  49. Lee, J. H.; Hinchet, R.; Kim, T. Y.; Ryu, H.; Seung, W.; Yoon, H. J.; Kim, S. W. Control of skin potential by triboelectrification with ferroelectric polymers. Adv. Mater. 2015, 27, 5553–5558.

    Article  Google Scholar 

  50. Fan, F. R.; Tang, W.; Wang, Z. L. Flexible nanogenerators for energy harvesting and self-powered electronics. Adv. Mater. 2016, 28, 4283–4305.

    Article  Google Scholar 

  51. Chun, J.; Kim, J. W.; Jung, W. S.; Kang, C. Y.; Kim, S. W.; Wang, Z. L.; Baik, J. M. Mesoporous pores impregnated with Au nanoparticles as effective dielectrics for enhancing triboelectric nanogenerator performance in harsh environments. Energy Environ. Sci. 2015, 8, 3006–3012.

    Article  Google Scholar 

  52. Wang, S. H.; Lin, L.; Wang, Z. L. Triboelectric nanogenerators as self-powered active sensors. Nano Energy 2015, 11, 436–462.

    Article  Google Scholar 

  53. Seol, M. L.; Lee, S. H.; Han, J. W.; Kim, D.; Cho, G. H.; Choi, Y. K. Impact of contact pressure on output voltage of triboelectric nanogenerator based on deformation of interfacial structures. Nano Energy 2015, 17, 63–71.

    Article  Google Scholar 

  54. Bai, P.; Zhu, G.; Zhou, Y. S.; Wang, S. H.; Ma, J. S.; Zhang, G.; Wang, Z. L. Dipole-moment-induced effect on contact electrification for triboelectric nanogenerators. Nano Res. 2014, 7, 990–997.

    Article  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Research Foundation Investigatorship (No. NRF-NRFI2016-05) and the NRF Competitive Research Programme (No. NRF-CRP-13-2014-02). Kaushik Parida acknowledges the research scholarship provided by Nanyang Technological University, Singapore.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pooi See Lee.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Parida, K., Bhavanasi, V., Kumar, V. et al. Self-powered pressure sensor for ultra-wide range pressure detection. Nano Res. 10, 3557–3570 (2017). https://doi.org/10.1007/s12274-017-1567-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-017-1567-6

Keywords

Navigation