Skip to main content
Log in

Dipole-moment-induced effect on contact electrification for triboelectric nanogenerators

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Triboelectric nanogenerators (TENGs) have been demonstrated as an effective way to harvest mechanical energy to drive small electronics. The density of triboelectric charges generated on contact surfaces between two distinct materials is a critical factor for dictating the output power. We demonstrate an approach to effectively tune the triboelectric properties of materials by taking advantage of the dipole moment in polarized polyvinylidene fluoride (PVDF), leading to substantial enhancement of the output power density of the TENG. The output voltage ranged from 72 V to 215 V under a constant contact force of 50 N. This work not only provides a new method of enhancing output power of TENGs, but also offers an insight into charge transfer in contact electrification by investigating dipole-moment-induced effects on the electrical output of TENGs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Lowell, J.; Rose-Innes, A. C. Contact electrification. Adv. Phys. 1980, 29, 947–1023.

    Article  Google Scholar 

  2. Harper, W. R. Contact and Frictional Electrification; Laplacian Press: Morgan Hill, 1998.

    Google Scholar 

  3. Horn, R. G.; Smith, D. T. Contact electrification and adhesion between dissimilar material. Science 1992, 256, 362–364.

    Article  Google Scholar 

  4. Horn, R. G.; Smith, D. T.; Grabbe, A. Contact electrification induced by monolayer modification of a surface and relation to acid-base interactions. Nature 1993, 366, 442–443.

    Article  Google Scholar 

  5. Pai, D. M.; Springett, B. E. Physics of electrophotography. Rev. Mod. Phys. 1993, 65, 163-211.

    Article  Google Scholar 

  6. Liu, C.-Y.; Bard, A. J. Electrostatic electrochemistry at insulators. Nat. Mater. 2008, 7, 505–509.

    Article  Google Scholar 

  7. Gibson, H. W. Control of electrical properties of polymers by chemical modification. Polymer 1984, 25, 3–27.

    Article  Google Scholar 

  8. McCarty, L. S.; Whitesides, G. M. Electrostatic charging due to separation of ions at interfaces: Contact electrification of ionic electrets. Angew. Chem. Int. Ed. 2008, 47, 2188–2207.

    Article  Google Scholar 

  9. Davies, D. K. Charge generation on dielectric surfaces. J. Phys. D: Appl. Phys. 1969, 2, 1533.

    Article  Google Scholar 

  10. Diaz, A. F.; Guay, J. Contact charging of organic materials: Ion vs. electron transfer. IBM J. Res. Dev. 1993, 37, 249–260.

    Article  Google Scholar 

  11. Schein, L. B. Electrophotography and Development Physics; Laplacian: Morgan Hill, 1996.

    Google Scholar 

  12. Burland, D. M.; Schein, L. B. Physics of electrophotography. Phys. Today 1986, 39, 46–53.

    Article  Google Scholar 

  13. Grzybowski, B. A.; Winkleman, A.; Wiles, J. A.; Brumer, Y.; Whitesides, G. M. Electrostatic self-assembly of macroscopic crystals using contact electrification. Nat. Mater 2003, 2, 241–245.

    Article  Google Scholar 

  14. Grzybowski, B. A.; Wiles, J. A.; Whitesides, G. M. Dynamics self-assembly of rings of charged metallic spheres. Phys. Rev. Lett. 2003, 90, 083903.

    Article  Google Scholar 

  15. Kwetkus, B. A. Particle triboelectrification and its use in the electrostatic separation process. Part. Sci. Technol. 1998, 16, 55–68.

    Article  Google Scholar 

  16. Fan, F.-R.; Lin, L.; Zhu, G.; Wu, W. Z.; Zhang, R.; Wang, Z. L. Transparent triboelectric nanogenerators and self-powered pressure sensors based on micropatterned plastic films. Nano Lett. 2012, 12, 3109–3114.

    Article  Google Scholar 

  17. Zhu, G.; Pan, C. F.; Guo, W. X.; Chen, C.-Y.; Zhou, Y. S.; Yu, R. M.; Wang, Z. L. Triboelectric-generator-driven pulse electrodeposition for micropatterning. Nano Lett. 2012, 12, 4960–4965.

    Article  Google Scholar 

  18. Wang, S. H.; Lin, L.; Wang, Z. L. Nanoscale triboelectric-effect-enabled energy conversion for sustainably powering portable electronics. Nano Lett. 2012, 12, 6339–6346.

    Article  Google Scholar 

  19. Zhu, G.; Lin, Z.-H.; Jing, Q. S.; Bai, P.; Pan, C. F.; Yang, Y.; Zhou, Y. S.; Wang, Z. L. Toward large-scale energy harvesting by a nanoparticle-enhanced triboelectric nanogenerator. Nano Lett. 2013, 13, 847–853.

    Article  Google Scholar 

  20. Xie, Y. N.; Wang, S. H.; Lin, L.; Jing, Q. S.; Lin, Z.-H.; Niu, S. M.; Wu, Z. Y.; Wang, Z. L. Rotary triboelectric nanogenerator based on a hybridized mechanism for harvesting wind energy. ACS Nano 2013, 7, 7119–7125.

    Article  Google Scholar 

  21. Bai, P.; Zhu, G.; Liu, Y.; Chen, J.; Jing, Q. S.; Yang, W. Q.; Ma, J. S.; Zhang, G.; Wang, Z. L. Cylindrical rotating triboelectric nanogenerator. ACS Nano 2013, 7, 6361–6366.

    Article  Google Scholar 

  22. Lin, L.; Wang, S. H.; Xie, Y. N.; Jing, Q. S.; Niu, S. M.; Hu, Y. F.; Wang, Z. L. Segmentally structured disk triboelectric nanogenerator for harvesting rotational mechanical energy. Nano Lett. 2013, 13, 2916–2923.

    Article  Google Scholar 

  23. Yang, X. H.; Zhu, G.; Wang, S. H.; Zhang, R.; Lin, L.; Wu W. Z.; Wang, Z. L. A Self-powered electrochromic device driven by a nanogenerator. Energ. Environ. Sci. 2012, 5, 9462–9466.

    Article  Google Scholar 

  24. Lin, Z.-H.; Zhu, G.; Zhou, Y. S.; Yang, Y.; Bai, P.; Chen, J.; Wang, Z. L. A Self-powered triboelectric nanosensor for mercury ion detection. Angew. Chem. Int. Ed. 2013, 52, 5065–5069.

    Article  Google Scholar 

  25. Bai, P.; Zhu, G.; Lin, Z.-H.; Jing, Q. S.; Chen, J.; Zhang, G.; Ma, J. S.; Wang, Z. L. Integrated multilayered triboelectric nanogenerator for harvesting biomechanical energy from human motion. ACS Nano 2013, 7, 3713–3719.

    Article  Google Scholar 

  26. Yang, Y.; Zhang, H. L.; Lee, S.; Kim, D.; Hwang, W.; Wang, Z. L. Hybrid energy cell for degradation of methyl orange by self-powered electrocatalytic oxidation. Nano Lett. 2013, 13, 803–808.

    Article  Google Scholar 

  27. Kim, H.; Kim, S. M.; Son, H.; Kim, H.; Park, B.; Ku, J.; Sohn, J. I.; Im, K.; Jang, J. E.; Park, J.-J.; et al. Enhancement of piezoelectricity via electrostatic effects on a textile platform. Energ. Environ. Sci. 2012, 5, 8932–8936.

    Article  Google Scholar 

  28. Harper, W. R. The Volta effect as a cause of static electrification. Proc. R. Soc. Lond. A 1951, 205, 83–103.

    Article  Google Scholar 

  29. Lowell, J. Tunnelling between metals and insulators and its role in contact electrification. J. Phys. D: Appl. Phys. 1979, 12, 1541.

    Article  Google Scholar 

  30. Davies, D. K. Charge generation on dielectric surfaces. J. Phys. D: Appl. Phys. 1969, 2, 1533.

    Article  Google Scholar 

  31. Lowell, J. The electrification of polymers by metals. J. Phys. D: Appl. Phys. 1976, 9, 1571.

    Article  Google Scholar 

  32. Grzybowski, B. A.; Fialkowski, M.; Wiles, J. A. Kinetics of contact electrification between metals and polymers. J. Phys. Chem. B 2005, 109, 20511–20515.

    Article  Google Scholar 

  33. Xue, X. Y.; Wang, S. H.; Guo, W. X.; Zhang, Y.; Wang, Z. L. Hybridizing energy conversion and storage in a mechanical-to-electrochemical process for self-charging power cell. Nano Lett. 2012, 12, 5048–5054.

    Article  Google Scholar 

  34. Lefki, K.; Dormans, G. J. M. Measurement of piezoelectric coefficients of ferroelectric thin films. J. Appl. Phys. 1994, 76, 1764.

    Article  Google Scholar 

  35. Kalinin, S. V.; Bonnell, D. A. Local potential and polarization screening on ferroelectric surfaces. Phys. Rev. B 2001, 63, 125411.

    Article  Google Scholar 

  36. Womes, M.; Bihler, E.; Eisenmenger, W. Dynamics of polarization growth and reversal in PVDF Films. IEEE Trans. Electr. Ins. 1989, 24, 461–468.

    Article  Google Scholar 

  37. Palto, S.; Blinov, L.; Dubovik, E.; Fridkin, V.; Petukhova, N.; Sorokin, A.; Verkhovskaya, K.; Yudin, S. Ferroelectric Langmuir-Blodgett films. Ferroelectr. Lett. 1995, 19, 65–68.

    Article  Google Scholar 

  38. Saurenbach, F.; Terris, B. D. Imaging of ferroelectric domain walls by force microscopy. Appl. Phys. Lett. 1990, 56, 1703.

    Article  Google Scholar 

  39. Hong, J. W.; Park, S.-I; Khim, Z. G. Measurement of hardness, surface potential, and charge distribution with dynamic contact mode electrostatic force microscope. Rev. Sci. Instrum. 1999, 70, 1735.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhong Lin Wang.

Additional information

Authors with equal contribution and order of authors determined by coin toss.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bai, P., Zhu, G., Zhou, Y.S. et al. Dipole-moment-induced effect on contact electrification for triboelectric nanogenerators. Nano Res. 7, 990–997 (2014). https://doi.org/10.1007/s12274-014-0461-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-014-0461-8

Keywords

Navigation