Skip to main content
Log in

Flexible electronic eardrum

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Flexible mechanosensors with a high sensitivity and fast response speed may advance the wearable and implantable applications of healthcare devices, such as real-time heart rate, pulse, and respiration monitoring. In this paper, we introduce a novel flexible electronic eardrum (EE) based on single-walled carbon nanotubes, poly-ethylene, and poly-dimethylsiloxane with micro-structured pyramid arrays. The EE device shows a high sensitivity, high signal-to-noise ratio (approximately 55 dB), and fast response time (76.9 μs) in detecting and recording sound within a frequency domain of 20–13,000 Hz. The mechanism for sound detection is investigated and the sensitivity is determined using the micro-structure, thickness, and strain state. We also demonstrated that the device is able to distinguish human voices. This unprecedented performance of the flexible electronic eardrum has implications for many applications such as implantable acoustical bioelectronics and personal voice recognition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Pan, L. J.; Chortos, A.; Yu, G. H.; Wang, Y. Q.; Isaacson, S.; Allen, R.; Shi, Y.; Dauskardt, R.; Bao, Z. An ultra-sensitive resistive pressure sensor based on hollow-sphere microstructure induced elasticity in conducting polymer film. Nat. Commun. 2014, 5, 3002.

    Google Scholar 

  2. Mannsfeld, S. C. B.; Tee, B. C. K.; Stoltenberg, R. M.; Chen, C. V. H. H.; Barman, S.; Muir, B. V. O.; Sokolov, A. N.; Reese, C.; Bao, Z. Highly sensitive flexible pressure sensors with microstructured rubber dielectric layers. Nat. Mater. 2010, 9, 859–864.

    Article  Google Scholar 

  3. Takei, K.; Takahashi, T.; Ho, J. C.; Ko, H.; Gillies, A. G.; Leu, P. W.; Fearing, R. S.; Javey, A. Nanowire active-matrix circuitry for low-voltage macroscale artificial skin. Nat. Mater. 2010, 9, 821–826.

    Article  Google Scholar 

  4. Kim, J.; Lee, M.; Shim, H. J.; Ghaffari, R.; Cho, H. R.; Son, D.; Jung, Y. H.; Soh, M.; Choi, C.; Jung, S. et al. Stretchable silicon nanoribbon electronics for skin prosthesis. Nat. Commun. 2014, 5, 5747.

    Article  Google Scholar 

  5. Turner, A. P. F.; Magan, N. Electronic noses and disease diagnostics. Nat. Rev. Micro. 2004, 2, 161–166.

    Article  Google Scholar 

  6. Peris, M.; Escuder-Gilabert, L. A 21st century technique for food control: Electronic noses. Anal. Chim. Acta 2009, 638, 1–15.

    Article  Google Scholar 

  7. Röck, F.; Barsan, N.; Weimar, U. Electronic nose: Current status and future trends. Chem. Rev. 2008, 108, 705–725.

    Article  Google Scholar 

  8. Henning, A.; Swaminathan, N.; Godkin, A.; Shalev, G.; Amit, I.; Rosenwaks, Y. Tunable diameter electrostatically formed nanowire for high sensitivity gas sensing. Nano Res. 2015, 8, 2206–2215.

    Article  Google Scholar 

  9. Song, Y. M.; Xie, Y. Z.; Malyarchuk, V.; Xiao, J. L.; Jung, I.; Choi, K. J.; Liu, Z. J.; Park, H.; Lu, C. F.; Kim, R. H. et al. Digital cameras with designs inspired by the arthropod eye. Nature 2013, 497, 95–99.

    Article  Google Scholar 

  10. Dagdeviren, C.; Su, Y. W.; Joe, P.; Yona, R.; Liu, Y. H.; Kim, Y. S.; Huang, Y. A.; Damadoran, A. R.; Xia, J.; Martin, L. W. et al. Conformable amplified lead zirconate titanate sensors with enhanced piezoelectric response for cutaneous pressure monitoring. Nat. Commun. 2014, 5, 4496.

    Article  Google Scholar 

  11. Park, J.; Kim, M.; Lee, Y.; Lee, H. S.; Ko, H. Fingertip skin-inspired microstructured ferroelectric skins discriminate static/dynamic pressure and temperature stimuli. Sci. Adv. 2015, 1, e1500661.

    Article  Google Scholar 

  12. Someya, T.; Kato, Y.; Sekitani, T.; Iba, S.; Noguchi, Y.; Murase, Y.; Kawaguchi, H.; Sakurai, T. Conformable, flexible, large-area networks of pressure and thermal sensors with organic transistor active matrixes. Proc. Natl. Acad. Sci. USA 2005, 102, 12321–12325.

    Article  Google Scholar 

  13. Yao, H. B.; Ge, J.; Wang, C. F.; Wang, X.; Hu, W.; Zheng, Z. J.; Ni, Y.; Yu, S. H. A flexible and highly pressuresensitive graphene-polyurethane sponge based on fractured microstructure design. Adv. Mater. 2013, 25, 6692–6698.

    Article  Google Scholar 

  14. Hou, C. Y.; Wang, H. Z.; Zhang, Q. H.; Li, Y. G.; Zhu, M. F. Highly conductive, flexible, and compressible all-graphene passive electronic skin for sensing human touch. Adv. Mater. 2014, 26, 5018–5024.

    Article  Google Scholar 

  15. Pang, C.; Lee, G. Y.; Kim, T. I.; Kim, S. M.; Kim, H. N.; Ahn, S. H.; Suh, K. Y. A flexible and highly sensitive straingauge sensor using reversible interlocking of nanofibres. Nat. Mater. 2012, 11, 795–801.

    Article  Google Scholar 

  16. Yi, L. Z.; Jiao, W. H.; Zhu, C. M.; Wu, K.; Zhang, C.; Qian, L. H.; Wang, S.; Jiang, Y. T.; Yuan, S. L. Ultrasensitive strain gauge with tunable temperature coefficient of resistivity. Nano Res. 2016, 9, 1346–1357.

    Article  Google Scholar 

  17. Yi, L. Z.; Jiao, W. H.; Wu, K.; Qian, L. H.; Yu, X. X.; Xia, Q.; Mao, K. M.; Yuan, S. L.; Wang, S.; Jiang, Y. T. Nanoparticle monolayer-based flexible strain gauge with ultrafast dynamic response for acoustic vibration detection. Nano Res. 2015, 8, 2978–2987.

    Article  Google Scholar 

  18. Wang, Y.; Yang, T. T.; Lao, J. C.; Zhang, R. J.; Zhang, Y. Y.; Zhu, M.; Li, X.; Zang, X. B.; Wang, K. L.; Yu, W. J. et al. Ultra-sensitive graphene strain sensor for sound signal acquisition and recognition. Nano Res. 2015, 8, 1627–1636.

    Article  Google Scholar 

  19. Lipomi, D. J.; Vosgueritchian, M.; Tee, B. C. K.; Hellstrom, S. L.; Lee, J. A.; Fox, C. H.; Bao, Z. Skin-like pressure and strain sensors based on transparent elastic films of carbon nanotubes. Nat. Nanotechnol. 2011, 6, 788–792.

    Article  Google Scholar 

  20. Park, S.; Kim, H.; Vosgueritchian, M.; Cheon, S.; Kim, H.; Koo, J. H.; Kim, T. R.; Lee, S.; Schwartz, G.; Chang, H. et al. Stretchable energy-harvesting tactile electronic skin capable of differentiating multiple mechanical stimuli modes. Adv. Mater. 2014, 26, 7324–7332.

    Article  Google Scholar 

  21. Zang, Y. P.; Zhang, F. J.; Huang, D. Z.; Gao, X. K.; Di, C. A.; Zhu, D. B. Flexible suspended gate organic thin-film transistors for ultra-sensitive pressure detection. Nat. Commun. 2015, 6, 6269.

    Article  Google Scholar 

  22. Zhou, J.; Gu, Y. D.; Fei, P.; Mai, W. J.; Gao, Y. F.; Yang, R. S.; Bao, G.; Wang, Z. L. Flexible piezotronic strain sensor. Nano Lett. 2008, 8, 3035–3040.

    Article  Google Scholar 

  23. Fan, F.-R.; Lin, L.; Zhu, G.; Wu, W. Z.; Zhang, R.; Wang, Z. L. Transparent triboelectric nanogenerators and selfpowered pressure sensors based on micropatterned plastic films. Nano Lett. 2012, 12, 3109–3114.

    Article  Google Scholar 

  24. Park, H.; Jeong, Y. R.; Yun, J.; Hong, S. Y.; Jin, S.; Lee, S. J.; Zi, G.; Ha, J. S. Stretchable array of highly sensitive pressure sensors consisting of polyaniline nanofibers and Au-coated polydimethylsiloxane micropillars. ACS Nano 2015, 9, 9974–9985.

    Article  Google Scholar 

  25. Choong, C. L.; Shim, M. B.; Lee, B. S.; Jeon, S.; Ko, D. S.; Kang, T. H.; Bae, J.; Lee, S. H.; Byun, K. E.; Im, J. et al. Highly stretchable resistive pressure sensors using a conductive elastomeric composite on a micropyramid array. Adv. Mater. 2014, 26, 3451–3458.

    Article  Google Scholar 

  26. Zhu, B. W.; Niu, Z. Q.; Wang, H.; Leow, W. R.; Wang, H.; Li, Y. G.; Zheng, L. Y.; Wei, J.; Huo, F. W.; Chen, X. D. Microstructured graphene arrays for highly sensitive flexible tactile sensors. Small 2014, 10, 3625–3631.

    Article  Google Scholar 

  27. Cao, Q.; Rogers, J. A. Ultrathin films of single-walled carbon nanotubes for electronics and sensors: A review of fundamental and applied aspects. Adv. Mater. 2009, 21, 29–53.

    Article  Google Scholar 

  28. Gruner, G. Carbon nanotube films for transparent and plastic electronics. J. Mater. Chem. 2006, 16, 3533–3539.

    Article  Google Scholar 

  29. Preston, C.; Song, D.; Dai, J. Q.; Tsinas, Z.; Bavier, J.; Cumings, J.; Ballarotto, V.; Hu, L. B. Scalable nanomanufacturing of surfactant-free carbon nanotube inks for spray coatings with high conductivity. Nano Res. 2015, 8, 2242–2250.

    Article  Google Scholar 

  30. Johnston, I. D.; McCluskey, D. K.; Tan, C. K. L.; Tracey, M. C. Mechanical characterization of bulk Sylgard 184 for microfluidics and microengineering. J. Micromech. Microeng. 2014, 24, 035017.

    Article  Google Scholar 

  31. Tee, B. C. K.; Chortos, A.; Dunn, R. R.; Schwartz, G.; Eason, E.; Bao, Z. A. Tunable flexible pressure sensors using microstructured elastomer geometries for intuitive electronics. Adv. Funct. Mater. 2014, 24, 5427–5434.

    Article  Google Scholar 

  32. Miao, J. M.; Lin, R. M.; Chen, L. Q.; Zou, Q. B.; Lim, S. Y.; Seah, S. H. Design considerations in micromachined silicon microphones. Microelectron. J. 2002, 33, 21–28.

    Article  Google Scholar 

  33. Boersma, P.; Weenink, D. PRAAT: Doing phonetics by computer. www.praat.org (accessed Oct 2, 2016).

    Google Scholar 

  34. Cartei, V.; Reby, D. Acting gay: Male actors shift the frequency components of their voices towards female values when playing homosexual characters. J. Nonverbal Behav. 2012, 36, 79–93.

    Article  Google Scholar 

Download references

Acknowledgements

We acknowledge the funding support from the National Natural Science Foundation of China (No. 61574163), the China Postdoctoral Science Foundation (No. 2015M571837) and the Foundation Research Project of Jiangsu Province (No. BK20150364).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ting Zhang.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gu, Y., Wang, X., Gu, W. et al. Flexible electronic eardrum. Nano Res. 10, 2683–2691 (2017). https://doi.org/10.1007/s12274-017-1470-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-017-1470-1

Keywords

Navigation