Skip to main content

Advertisement

Log in

Self-charging supercapacitors for smart electronic devices: a concise review on the recent trends and future sustainability

  • Review
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Self-powered systems or self-powered devices belong to one of the most pivotal research topics that specifically aim toward the growth of portable and wearable electronic industries over the last few years. A sizeable number of self-powered systems have been established, utilizing the various modes of energy conversion (solar cells, mechanical energy harvester and thermal energy harvester) and storage technologies (batteries and supercapacitors). This review provides a summarized content regarding the research and development on the various types of self-charging supercapacitor power cells (SCSPCs) that have been developed since the past few decades. The selection of novel materials, device architecture and performance metrics are influential/critical for the evolution of SCSPCs for next-generation electronics applications. Integrating both the energy conversion and storage devices into a single system brings substantial challenges regarding the understanding of the underlying working mechanisms and its subsequent application for powering portable and wearable electronics. Up to date, state-of-the-art instances of SCSPCs fabrication technologies and performance matrices have been emphasized in this review. Furthermore, the key challenges encountered during SCSPCs fabrication, their useful applications in various fields and their possible solutions are discussed for future developments on SCSPCs.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13
Figure 14
Figure 15
Figure 16
Figure 17

Similar content being viewed by others

Abbreviations

SCSPCs:

Self-charging supercapacitor power cells

EES:

Electrical energy storage

LIBs:

Lithium-ion batteries

SCs:

Supercapacitors

HEVs:

Heavy electric vehicles

SPEESs:

Electrochemical energy storage systems

TENG:

Triboelectric nanogenerator

PENG:

Piezoelectric nanogenerator

SCPCs:

Self-charging power cells

DSSCs:

Dye-sensitized solar cells

PeSCs:

Perovskite solar cells

PSCs:

Polymer solar cells

QDSSCs:

Quantum dot sensitized solar cells

PANI:

Polyaniline

SS:

Stainless steel

ITO:

Indium-doped tin oxide

PEN:

Polyethylene naphthalate

CNT:

Carbon nanotube

SEM:

Scanning electron microscope

OSCs:

Organic solar cells

rGO:

Reduced graphene oxide

PPy:

Polypyrrole

PEDOT:PSS:

Poly(3,4-ethylene dioxythiophene)-poly-(styrene sulfonate)

CNF:

Carbon nanofiber

PAN:

Polyacrylonitrile

MSC:

Micro-supercapacitor

PDMS:

Polydimethylsiloxane

NWs:

Nanowires

FEP:

Fluorinated ethylene propylene

PET:

Polyethylene terephthalate

PTFE:

Polytetrafluoroethylene

ASG:

Acrylate structure glue

SAG:

Silicic acid gel

PVDF-HFP:

Polyvinylidene fluoride hexafluoropropylene

[P(VDF-TrFE)]:

Poly[(vinylidenefluoride-co-trifluoroethylene]

References

  1. Simon P, Gogotsi Y (2010) Materials for electrochemical capacitors. In: Nanoscience and technology: a collection of reviews from nature journals. World Scientific, pp 320–329

  2. Da Silva LM, Cesar R, Moreira CMR, Santos JHM, De Souza LG, Pires BM, Vicentini R, Nunes W, Zanin H (2020) Reviewing the fundamentals of supercapacitors and the difficulties involving the analysis of the electrochemical findings obtained for porous electrode materials. Energy Storage Mater 27:555–590

    Article  Google Scholar 

  3. Dubal DP, Chodankar NR, Kim D-H, Gomez-Romero P (2018) Towards flexible solid-state supercapacitors for smart and wearable electronics. Chem Soc Rev 47:2065–2129

    Article  CAS  Google Scholar 

  4. Boruah BD (2019) Roadmap of in-plane electrochemical capacitors and their advanced integrated systems. Energy Storage Mater 21:219–239

    Article  Google Scholar 

  5. Wang J, Li X, Zi Y, Wang S, Li Z, Zheng L, Yi F, Li S, Wang ZL (2015) A flexible fiber-based supercapacitor–triboelectric-nanogenerator power system for wearable electronics. Adv Mater 27(33):4830–4836

    Article  CAS  Google Scholar 

  6. Zhao L, Liu L, Yang X, Hong H, Yang Q, Wang J, Tang Q (2020) Cumulative charging behavior of water droplet driven freestanding triboelectric nanogenerators toward hydrodynamic energy harvesting. J Mater Chem A 8(16):7880–7888

    Article  CAS  Google Scholar 

  7. Lim EL, Yap CC, Jumali MHH, Teridi MAM, Teh CH (2018) A mini review: can graphene be a novel material for perovskite solar cell applications? Nano-Micro Lett 10(2):27

    Article  Google Scholar 

  8. Liang X, Qi R, Zhao M, Zhang Z, Liu M, Pu X, Wang ZL, Lu X (2020) Ultrafast lithium-ion capacitors for efficient storage of energy generated by triboelectric nanogenerators. Energy Storage Mater 24:297–303

    Article  Google Scholar 

  9. Hashemi SA, Ramakrishna S, Aberle AG (2020) Recent progress in flexible–wearable solar cells for self-powered electronic devices. Energy Environ Sci 13(3):685–743

    Article  CAS  Google Scholar 

  10. Pu X, Hu W, Wang ZL (2018) Toward wearable self-charging power systems: the integration of energy-harvesting and storage devices. Small 14(1):1702817. https://doi.org/10.1002/smll.201702817

    Article  CAS  Google Scholar 

  11. Peng K-Q, Wang X, Li L, Hu Y, Lee S-T (2013) Silicon nanowires for advanced energy conversion and storage. Nano Today 8(1):75–97

    Article  CAS  Google Scholar 

  12. Dubal DP, Ayyad O, Ruiz V, Gómez-Romero P (2015) Hybrid energy storage: the merging of battery and supercapacitor chemistries. Chem Soc Rev 44(7):1777–1790

    Article  CAS  Google Scholar 

  13. Huang L, Lin S, Xu Z, Zhou H, Duan J, Hu B, Zhou J (2020) Fiber-based energy conversion devices for human-body energy harvesting. Adv Mater 32(5):1902034

    Article  CAS  Google Scholar 

  14. Sahoo S, Krishnamoorthy K, Pazhamalai P, Kim S-J (2018) Copper molybdenum sulfide anchored nickel foam: a high performance, binder-free, negative electrode for supercapacitors. Nanoscale 10(29):13883–13888

    Article  CAS  Google Scholar 

  15. Ye L, Hong Y, Liao M, Wang B, Wei D, Peng H, Ye L, Hong Y, Liao M, Wang B (2020) Recent advances in flexible fiber-shaped metal-air batteries. Energy Storage Mater 28:364–374

    Article  Google Scholar 

  16. Zhou Y, Zhu Y, Xu B, Zhang X, Al-Ghanim KA, Mahboob S (2019) Cobalt sulfide confined in N-doped porous branched carbon nanotubes for lithium-ion batteries. Nano-Micro Lett 11(1):29

    Article  CAS  Google Scholar 

  17. Sahoo S, Pazhamalai P, Mariappan VK, Veerasubramani GK, Kim N-J, Kim S-J (2020) Hydrothermally synthesized chalcopyrite platelets as electrode material for symmetric supercapacitors. Inorg Chem Front 7(7):1492–1502

    Article  CAS  Google Scholar 

  18. Zhang S, Pan N (2015) Supercapacitors performance evaluation. Adv Energy Mater 5(6):1401401. https://doi.org/10.1002/aenm.201401401

    Article  CAS  Google Scholar 

  19. Pan S, Ren J, Fang X, Peng H (2016) Integration: an effective strategy to develop multifunctional energy storage devices. Adv Energy Mater 6(4):1501867

    Article  Google Scholar 

  20. Lee J-H, Kim J, Kim TY, Al Hossain MS, Kim S-W, Kim JH (2016) All-in-one energy harvesting and storage devices. J Mater Chem A 4(21):7983–7999

    Article  CAS  Google Scholar 

  21. Kwak SS, Yoon H, Kim S (2019) Textile-based triboelectric nanogenerators for self-powered wearable electronics. Adv Funct Mater 29(2):1804533

    Article  Google Scholar 

  22. Yun S, Zhang Y, Xu Q, Liu J, Qin Y (2019) Recent advance in new-generation integrated devices for energy harvesting and storage. Nano Energy 60:600–619

    Article  CAS  Google Scholar 

  23. Sahoo S, Krishnamoorthy K, Pazhamalai P, Mariappan VK, Manoharan S, Kim S-J (2019) High performance self-charging supercapacitors using a porous PVDF-ionic liquid electrolyte sandwiched between two-dimensional graphene electrodes. J Mater Chem A 7(38):21693–21703. https://doi.org/10.1039/c9ta06245a

    Article  CAS  Google Scholar 

  24. Wei H, Cui D, Ma J, Chu L, Zhao X, Song H, Liu H, Liu T, Wang N, Guo Z (2017) Energy conversion technologies towards self-powered electrochemical energy storage systems: the state of the art and perspectives. J Mater Chem A 5(5):1873–1894

    Article  CAS  Google Scholar 

  25. Zhang X-S, Han M, Kim B, Bao J-F, Brugger J, Zhang H (2018) All-in-one self-powered flexible microsystems based on triboelectric nanogenerators. Nano Energy 47:410–426

    Article  CAS  Google Scholar 

  26. Zhao K, Qin Q, Wang H, Yang Y, Yan J, Jiang X (2017) Antibacterial triboelectric membrane-based highly-efficient self-charging supercapacitors. Nano Energy 36:30–37

    Article  CAS  Google Scholar 

  27. Guo H, Yeh M-H, Zi Y, Wen Z, Chen J, Liu G, Hu C, Wang ZL (2017) Ultralight cut-paper-based self-charging power unit for self-powered portable electronic and medical systems. ACS Nano 11(5):4475–4482

    Article  CAS  Google Scholar 

  28. Qiu J, Shen Y, Li B, Zheng Y, Xia Y, Chen Y, Huang W (2019) Toward a new energy era: self-driven integrated systems based on perovskite solar cells. Sol RRL 3(11):1900320

    Article  CAS  Google Scholar 

  29. Nozariasbmarz A, Collins H, Dsouza K, Polash MH, Hosseini M, Hyland M, Liu J, Malhotra A, Ortiz FM, Mohaddes F (2020) Review of wearable thermoelectric energy harvesting: from body temperature to electronic systems. Appl Energy 258:114069

    Article  Google Scholar 

  30. Luo J, Wang ZL (2019) Recent advances in triboelectric nanogenerator based self-charging power systems. Energy Storage Mater 23:617–628

    Article  Google Scholar 

  31. Wang ZL (2012) Self-powered nanosensors and nanosystems. Adv Mater 24(2):280–285

    Article  CAS  Google Scholar 

  32. Narita F, Fox M (2018) A review on piezoelectric, magnetostrictive, and magnetoelectric materials and device technologies for energy harvesting applications. Adv Eng Mater 20(5):1700743

    Article  Google Scholar 

  33. Wang ZL, Song J (2006) Piezoelectric nanogenerators based on zinc oxide nanowire arrays. Science (80-. ) 312(5771):242–246

    Article  CAS  Google Scholar 

  34. Zhao K, Wang Y, Han L, Wang Y, Luo X, Zhang Z, Yang Y (2019) Nanogenerator-based self-charging energy storage devices. Nano-Micro Lett 11(1):19. https://doi.org/10.1007/s40820-019-0251-7

    Article  CAS  Google Scholar 

  35. Zhong Y, Xia X, Mai W, Tu J, Fan HJ (2017) Integration of energy harvesting and electrochemical storage devices. Adv Mater Technol 2(12):1700182

    Article  Google Scholar 

  36. Lau D, Song N, Hall C, Jiang Y, Lim S, Perez-Wurfl I, Ouyang Z, Lennon A (2019) Hybrid solar energy harvesting and storage devices: the promises and challenges. Mater Today Energy 13:22–44

    Article  Google Scholar 

  37. Xue X, Wang S, Guo W, Zhang Y, Wang ZL (2012) Hybridizing energy conversion and storage in a mechanical-to- electrochemical process for self-charging power cell. Nano Lett 12(9):5048–5054. https://doi.org/10.1021/nl302879t

    Article  CAS  Google Scholar 

  38. Ramadoss A, Saravanakumar B, Lee SW, Kim Y-S, Kim SJ, Wang ZL (2015) Piezoelectric-driven self-charging supercapacitor power cell. ACS Nano 9(4):4337–4345. https://doi.org/10.1021/acsnano.5b00759

    Article  CAS  Google Scholar 

  39. Tan P, Zou Y, Fan Y, Li Z (2020) Self-powered wearable electronics. Wearable Technol 1(e5):1–27 https://doi.org/10.1017/wtc.2020.3

    Article  Google Scholar 

  40. Núñez CG, Manjakkal L, Dahiya R (2019) Energy autonomous electronic skin. npj Flex Electron 3(1):1–24

    Article  Google Scholar 

  41. Xu C, Song Y, Han M, Zhang H (2021) Portable and wearable self-powered systems based on emerging energy harvesting technology. Microsyst Nanoeng 7(1):1–14

    Article  Google Scholar 

  42. Patra A, Namsheer K, Jose JR, Sahoo S, Chakraborty B, Rout CS (2021) Understanding the charge storage mechanism of supercapacitors: in situ/operando spectroscopic approaches and theoretical investigations. J Mater Chem A 9(46):25852–25891

    Article  CAS  Google Scholar 

  43. Kandasamy M, Sahoo S, Nayak SK, Chakraborty B, Rout CS (2021) Recent advances in engineered metal oxide nanostructures for supercapacitor applications: experimental and theoretical aspects. J Mater Chem A 9(33):17643–17700

    Article  CAS  Google Scholar 

  44. Hu Y, Sun X (2014) Flexible rechargeable lithium ion batteries: advances and challenges in materials and process technologies. J Mater Chem A 2(28):10712–10738

    Article  CAS  Google Scholar 

  45. Shen C, Xu S, Xie Y, Sanghadasa M, Wang X, Lin L (2017) A review of on-chip micro supercapacitors for integrated self-powering systems. J Microelectromech Syst 26(5):949–965

    Article  CAS  Google Scholar 

  46. Aaryashree, Sahoo S, Walke P, Nayak SK, Rout CS, Late DJ (2021) Recent developments in self-powered smart chemical sensors for wearable electronics. Nano Res 14(11):3669–3689 https://doi.org/10.1007/s12274-021-3330-8

    Article  CAS  Google Scholar 

  47. Pazhamalai P, Krishnamoorthy K, Mariappan VK, Sahoo S, Manoharan S, Kim S (2018) A high efficacy self-charging MoSe2 solid-state supercapacitor using electrospun nanofibrous piezoelectric separator with ionogel electrolyte. Adv Mater Interfaces 5:1800055

    Article  Google Scholar 

  48. Hu Y, Ding S, Chen P, Seaby T, Hou J, Wang L (2020) Flexible solar-rechargeable energy system. Energy Storage Mater 32:356–376

    Article  Google Scholar 

  49. Xiao Z, Yan Y (2017) Progress in theoretical study of metal halide perovskite solar cell materials. Adv Energy Mater 7(22):1701136

    Article  Google Scholar 

  50. Siddiki MK, Li J, Galipeau D, Qiao Q (2010) A review of polymer multijunction solar cells. Energy Environ Sci 3(7):867–883

    Article  CAS  Google Scholar 

  51. Huang X, Han S, Huang W, Liu X (2013) Enhancing solar cell efficiency: the search for luminescent materials as spectral converters. Chem Soc Rev 42(1):173–201

    Article  CAS  Google Scholar 

  52. Meng H, Pang S, Cui G (2019) Photo-supercapacitors based on third-generation solar cells. Chemsuschem 12(15):3431–3447

    Article  CAS  Google Scholar 

  53. Sun Y, Yan X (2017) Recent advances in dual-functional devices integrating solar cells and supercapacitors. Sol RRL 1(3–4):1700002

    Article  Google Scholar 

  54. Vega-Garita V, Ramirez-Elizondo L, Narayan N, Bauer P (2019) Integrating a photovoltaic storage system in one device: a critical review. Prog Photovolt Res Appl 27(4):346–370. https://doi.org/10.1002/pip.3093

    Article  Google Scholar 

  55. Sharma K, Sharma V, Sharma SS (2018) Dye-sensitized solar cells: fundamentals and current status. Nanoscale Res Lett 13(1):381. https://doi.org/10.1186/s11671-018-2760-6

    Article  CAS  Google Scholar 

  56. Hara K, Sato T, Katoh R, Furube A, Yoshihara T, Murai M, Kurashige M, Ito S, Shinpo A, Suga S, Arakawa H (2005) Novel conjugated organic dyes for efficient dye-sensitized solar cells. Adv Funct Mater 15(2):246–252. https://doi.org/10.1002/adfm.200400272

    Article  CAS  Google Scholar 

  57. Chen T, Qiu L, Kia HG, Yang Z, Peng H (2012) Designing aligned inorganic nanotubes at the electrode interface: towards highly efficient photovoltaic wires. Adv Mater 24(34):4623–4628

    Article  CAS  Google Scholar 

  58. Cooper CB, Beard EJ, Vázquez-Mayagoitia Á, Stan L, Stenning GBG, Nye DW, Vigil JA, Tomar T, Jia J, Bodedla GB (2019) Design-to-device approach affords panchromatic co-sensitized solar cells. Adv Energy Mater 9(5):1802820

    Article  Google Scholar 

  59. Tang Q, Cai H, Yuan S, Wang X (2013) Counter electrodes from double-layered polyaniline nanostructures for dye-sensitized solar cell applications. J Mater Chem A 1(2):317–323

    Article  CAS  Google Scholar 

  60. Miyasaka T, Murakami TN (2004) The photocapacitor: an efficient self-charging capacitor for direct storage of solar energy. Appl Phys Lett 85(17):3932–3934

    Article  CAS  Google Scholar 

  61. Fu Y, Wu H, Ye S, Cai X, Yu X, Hou S, Kafafy H, Zou D (2013) Integrated power fiber for energy conversion and storage. Energy Environ Sci 6(3):805–812

    Article  CAS  Google Scholar 

  62. Scalia A, Bella F, Lamberti A, Bianco S, Gerbaldi C, Tresso E, Pirri CF (2017) A flexible and portable powerpack by solid-state supercapacitor and dye-sensitized solar cell integration. J Power Sour 359:311–321

    Article  CAS  Google Scholar 

  63. Scalia A, Bella F, Lamberti A, Gerbaldi C, Tresso E (2019) Innovative multipolymer electrolyte membrane designed by oxygen inhibited UV-crosslinking enables solid-state in plane integration of energy conversion and storage devices. Energy 166:789–795

    Article  CAS  Google Scholar 

  64. Pedico A, Lamberti A, Gigot A, Fontana M, Bella F, Rivolo P, Cocuzza M, Pirri CF (2018) High-performing and stable wearable supercapacitor exploiting rGO aerogel decorated with copper and molybdenum sulfides on carbon fibers. ACS Appl Energy Mater 1(9):4440–4447

    Article  CAS  Google Scholar 

  65. Dong P, Rodrigues M-TF, Zhang J, Borges RS, Kalaga K, Reddy ALM, Silva GG, Ajayan PM, Lou J (2017) A flexible solar cell/supercapacitor integrated energy device. Nano Energy 42:181–186

    Article  CAS  Google Scholar 

  66. Liu K, Chen Z, Lv T, Yao Y, Li N, Li H, Chen T (2020) A self-supported graphene/carbon nanotube hollow fiber for integrated energy conversion and storage. Nano-Micro Lett 12(1):1–11

    Article  Google Scholar 

  67. Pan Z, Rao H, Mora-Seró I, Bisquert J, Zhong X (2018) Quantum dot-sensitized solar cells. Chem Soc Rev 47(20):7659–7702. https://doi.org/10.1039/c8cs00431e

    Article  CAS  Google Scholar 

  68. Kouhnavard M, Ikeda S, Ludin NA, Khairudin NBA, Ghaffari BV, Mat-Teridi MA, Ibrahim MA, Sepeai S, Sopian K (2014) A review of semiconductor materials as sensitizers for quantum dot-sensitized solar cells. Renew Sustain Energy Rev 37:397–407

    Article  CAS  Google Scholar 

  69. Zhang X, Johansson EMJ (2017) Reduction of charge recombination in PbS colloidal quantum dot solar cells at the quantum dot/ZnO interface by inserting a MgZnO buffer layer. J Mater Chem A 5(1):303–310

    Article  CAS  Google Scholar 

  70. Narayanan R, Kumar PN, Deepa M, Srivastava AK (2015) Combining energy conversion and storage: a solar powered supercapacitor. Electrochim Acta 178:113–126

    Article  CAS  Google Scholar 

  71. Shi C, Dong H, Zhu R, Li H, Sun Y, Xu D, Zhao Q, Yu D (2015) An ‘all-in-one’ mesh-typed integrated energy unit for both photoelectric conversion and energy storage in uniform electrochemical system. Nano Energy 13:670–678

    Article  CAS  Google Scholar 

  72. Das A, Deshagani S, Kumar R, Deepa M (2018) Bifunctional photo-supercapacitor with a new architecture converts and stores solar energy as charge. ACS Appl Mater Interfaces 10(42):35932–35945

    Article  CAS  Google Scholar 

  73. Xu J, Boyd CC, Yu ZJ, Palmstrom AF, Witter DJ, Larson BW, France RM, Werner J, Harvey SP, Wolf EJ, Weigand W, Manzoor S, van Hest MFAM, Berry JJ, Luther JM, Holman ZC, McGehee MD (2020) Triple-halide wide–band gap perovskites with suppressed phase segregation for efficient tandems. Science (80-) 367(6482):1097–1104. https://doi.org/10.1126/science.aaz5074

    Article  CAS  Google Scholar 

  74. Best Research-Cell Efficiency Chart | Photovoltaic Research | NREL. https://www.nrel.gov/pv/cell-efficiency.html

  75. Duong T, Pham H, Kho TC, Phang P, Fong KC, Yan D, Yin Y, Peng J, Mahmud MA, Gharibzadeh S (2020) High efficiency perovskite-silicon tandem solar cells: effect of surface coating versus bulk incorporation of 2D perovskite. Adv Energy Mater 10(9):1903553

    Article  CAS  Google Scholar 

  76. Jung HS, Park N-G (2015) Perovskite solar cells: from materials to devices. Small 11(1):10–25. https://doi.org/10.1002/smll.201402767

    Article  CAS  Google Scholar 

  77. Zhou J, Li S, Lv X, Li X, Li Y, Zheng Y-Z, Tao X (2020) Ultra-low-cost all-air processed carbon-based perovskite solar cells from bottom electrode to counter electrode. J Power Sour 478:228764

    Article  CAS  Google Scholar 

  78. Fagiolari L, Bella F (2019) Carbon-based materials for stable, cheaper and large-scale processable perovskite solar cells. Energy Environ Sci 12(12):3437–3472

    Article  CAS  Google Scholar 

  79. Bella F, Renzi P, Cavallo C, Gerbaldi C (2018) Caesium for perovskite solar cells: an overview. Chem Eur J 24(47):12183–12205

    Article  CAS  Google Scholar 

  80. Park N-G (2015) Perovskite solar cells: an emerging photovoltaic technology. Mater Today 18(2):65–72

    Article  CAS  Google Scholar 

  81. Mali SS, Patil JV, Kim H, Luque R, Hong CK (2019) Highly efficient thermally stable perovskite solar cells via Cs: NiOx/CuSCN double-inorganic hole extraction layer interface engineering. Mater Today 26:8–18

    Article  CAS  Google Scholar 

  82. Ball JM, Lee MM, Hey A, Snaith HJ (2013) Low-temperature processed meso-superstructured to thin-film perovskite solar cells. Energy Environ Sci 6(6):1739–1743

    Article  CAS  Google Scholar 

  83. Burschka J, Pellet N, Moon S-J, Humphry-Baker R, Gao P, Nazeeruddin MK, Grätzel M (2013) Sequential deposition as a route to high-performance perovskite-sensitized solar cells. Nature 499(7458):316–319

    Article  CAS  Google Scholar 

  84. Du P, Hu X, Yi C, Liu HC, Liu P, Zhang H, Gong X (2015) Self-powered electronics by integration of flexible solid-state graphene-based supercapacitors with high performance perovskite hybrid solar cells. Adv Funct Mater 25(16):2420–2427

    Article  CAS  Google Scholar 

  85. Sun H, Jiang Y, Qiu L, You X, Yang J, Fu X, Chen P, Guan G, Yang Z, Sun X (2015) Energy harvesting and storage devices fused into various patterns. J Mater Chem A 3(29):14977–14984

    Article  CAS  Google Scholar 

  86. Xu X, Li S, Zhang H, Shen Y, Zakeeruddin SM, Graetzel M, Cheng Y-B, Wang M (2015) A power pack based on organometallic perovskite solar cell and supercapacitor. ACS Nano 9(2):1782–1787

    Article  CAS  Google Scholar 

  87. Xu J, Ku Z, Zhang Y, Chao D, Fan HJ (2016) Integrated photo-supercapacitor based on PEDOT modified printable perovskite solar cell. Adv Mater Technol 1(5):1600074

    Article  Google Scholar 

  88. Zhou F, Ren Z, Zhao Y, Shen X, Wang A, Li YY, Surya C, Chai Y (2016) Perovskite photovoltachromic supercapacitor with all-transparent electrodes. ACS Nano 10(6):5900–5908

    Article  CAS  Google Scholar 

  89. Zhang F, Li W, Xu Z, Ye M, Xu H, Guo W, Liu X (2018) Highly flexible and scalable photo-rechargeable power unit based on symmetrical nanotube arrays. Nano Energy 46:168–175

    Article  CAS  Google Scholar 

  90. Liang J, Zhu G, Wang C, Zhao P, Wang Y, Hu Y, Ma L, Tie Z, Liu J, Jin Z (2018) An all-inorganic perovskite solar capacitor for efficient and stable spontaneous photocharging. Nano Energy 52:239–245

    Article  CAS  Google Scholar 

  91. Liu Z, Zhong Y, Sun B, Liu X, Han J, Shi T, Tang Z, Liao G (2017) Novel integration of perovskite solar cell and supercapacitor based on carbon electrode for hybridizing energy conversion and storage. ACS Appl Mater Interfaces 9(27):22361–22368

    Article  CAS  Google Scholar 

  92. Ng CH, Lim HN, Hayase S, Zainal Z, Shafie S, Lee HW, Huang NM (2018) Cesium lead halide inorganic-based perovskite-sensitized solar cell for photo-supercapacitor application under high humidity condition. ACS Appl Energy Mater 1(2):692–699

    Article  CAS  Google Scholar 

  93. Yu G, Gao J, Hummelen JC, Wudl F, Heeger AJ (1995) Polymer photovoltaic cells: enhanced efficiencies via a network of internal donor-acceptor heterojunctions. Science (80-) 270(5243):1789–1791

    Article  CAS  Google Scholar 

  94. Liu Q, Jiang Y, Jin K, Qin J, Xu J, Li W, Xiong J, Liu J, Xiao Z, Sun K (2020) 18% Efficiency organic solar cells. Sci Bull 65(4):272–275

    Article  CAS  Google Scholar 

  95. Peng H, Sun X, Weng W, Fang X (2017) 5 - Energy harvesting based on polymer. In: Peng H, Sun X, Weng W, X. B. T.-P. M. for E. and Fang EA (eds). Academic Press, pp 151–196. https://doi.org/10.1016/b978-0-12-811091-1.00005-7

  96. You J, Li X, Xie F, Sha WEI, Kwong JHW, Li G, Choy WCH, Yang Y (2012) Surface plasmon and scattering-enhanced low-bandgap polymer solar cell by a metal grating back electrode. Adv Energy Mater 2(10):1203–1207

    Article  CAS  Google Scholar 

  97. Yang Y, Mielczarek K, Aryal M, Zakhidov A, Hu W (2012) Nanoimprinted polymer solar cell. ACS Nano 6(4):2877–2892

    Article  CAS  Google Scholar 

  98. Zhu F, Chen X, Lu Z, Yang J, Huang S, Sun Z (2014) Efficiency enhancement of inverted polymer solar cells using ionic liquid-functionalized carbon nanoparticles-modified ZnO as electron selective layer. Nano-Micro Lett 6(1):24–29

    Article  Google Scholar 

  99. You J, Dou L, Hong Z, Li G, Yang Y (2013) Recent trends in polymer tandem solar cells research. Prog Polym Sci 38(12):1909–1928

    Article  CAS  Google Scholar 

  100. Zhang Z, Chen X, Chen P, Guan G, Qiu L, Lin H, Yang Z, Bai W, Luo Y, Peng H (2014) Integrated polymer solar cell and electrochemical supercapacitor in a flexible and stable fiber format. Adv Mater 26(3):466–470

    Article  CAS  Google Scholar 

  101. Kim J, Lee SM, Hwang Y-H, Lee S, Park B, Jang J-H, Lee K (2017) A highly efficient self-power pack system integrating supercapacitors and photovoltaics with an area-saving monolithic architecture. J Mater Chem A 5(5):1906–1912

    Article  CAS  Google Scholar 

  102. Liu R, Wang J, Sun T, Wang M, Wu C, Zou H, Song T, Zhang X, Lee S-T, Wang ZL (2017) Silicon nanowire/polymer hybrid solar cell-supercapacitor: a self-charging power unit with a total efficiency of 10.5%. Nano Lett 17(7):4240–4247

    Article  CAS  Google Scholar 

  103. Liu H, Li M, Kaner RB, Chen S, Pei Q (2018) Monolithically integrated self-charging power pack consisting of a silicon nanowire array/conductive polymer hybrid solar cell and a laser-scribed graphene supercapacitor. ACS Appl Mater Interfaces 10(18):15609–15615

    Article  CAS  Google Scholar 

  104. Wang ZL, Zhu G, Yang Y, Wang S, Pan C (2012) Progress in nanogenerators for portable electronics. Mater today 15(12):532–543

    Article  CAS  Google Scholar 

  105. Fan FR, Tang W, Wang ZL (2016) Flexible nanogenerators for energy harvesting and self-powered electronics. Adv Mater 28(22):4283–4305

    Article  CAS  Google Scholar 

  106. Liu D, Yin X, Guo H, Zhou L, Li X, Zhang C, Wang J, Wang ZL (2019) A constant current triboelectric nanogenerator arising from electrostatic breakdown. Sci Adv 5(4):eaav6437. https://doi.org/10.1126/sciadv.aav6437

    Article  CAS  Google Scholar 

  107. Fan F-R, Tian Z-Q, Wang ZL (2012) Flexible triboelectric generator. Nano Energy 1(2):328–334

    Article  CAS  Google Scholar 

  108. Rajagopalan P, Huang S, Shi L, Kuang H, Jin H, Dong S, Shi W, Wang X, Luo J (2021) Novel insights from the ultra-thin film, strain-modulated dynamic triboelectric characterizations. Nano Energy 80:105560

    Article  CAS  Google Scholar 

  109. Rajagopalan P, Jakhar P, Palani IA, Singh V, Kim SJ (2020) Elucidations on the effect of lanthanum doping in ZnO towards enhanced performance nanogenerators. Int J Precis Eng Manuf Technol 7(1):77–87

    Article  Google Scholar 

  110. Niu S, Wang ZL (2015) Theoretical systems of triboelectric nanogenerators. Nano Energy 14:161–192

    Article  CAS  Google Scholar 

  111. Wang ZL (2015) Triboelectric nanogenerators as new energy technology and self-powered sensors–Principles, problems and perspectives. Faraday Discuss 176:447–458

    Article  Google Scholar 

  112. Wang ZL, Chen J, Lin L (2015) Progress in triboelectric nanogenerators as a new energy technology and self-powered sensors. Energy Environ Sci 8(8):2250–2282

    Article  CAS  Google Scholar 

  113. Pu X, Liu M, Chen X, Sun J, Du C, Zhang Y, Zhai J, Hu W, Wang ZL (2017) Ultrastretchable, transparent triboelectric nanogenerator as electronic skin for biomechanical energy harvesting and tactile sensing. Sci Adv 3(5):e1700015

    Article  Google Scholar 

  114. Yi F, Wang J, Wang X, Niu S, Li S, Liao Q, Xu Y, You Z, Zhang Y, Wang ZL (2016) Stretchable and waterproof self-charging power system for harvesting energy from diverse deformation and powering wearable electronics. ACS Nano 10(7):6519–6525

    Article  CAS  Google Scholar 

  115. Guo H, Yeh M-H, Lai Y-C, Zi Y, Wu C, Wen Z, Hu C, Wang ZL (2016) All-in-one shape-adaptive self-charging power package for wearable electronics. ACS Nano 10(11):10580–10588

    Article  CAS  Google Scholar 

  116. Xiao X, Li T, Yang P, Gao Y, Jin H, Ni W, Zhan W, Zhang X, Cao Y, Zhong J (2012) Fiber-based all-solid-state flexible supercapacitors for self-powered systems. ACS Nano 6(10):9200–9206

    Article  CAS  Google Scholar 

  117. Pu X, Li L, Liu M, Jiang C, Du C, Zhao Z, Hu W, Wang ZL (2016) Wearable self-charging power textile based on flexible yarn supercapacitors and fabric nanogenerators. Adv Mater 28(1):98–105

    Article  CAS  Google Scholar 

  118. Wang J, Wen Z, Zi Y, Zhou P, Lin J, Guo H, Xu Y, Wang ZL (2016) All-plastic-materials based self-charging power system composed of triboelectric nanogenerators and supercapacitors. Adv Funct Mater 26(7):1070–1076

    Article  CAS  Google Scholar 

  119. Dong K, Wang Y-C, Deng J, Dai Y, Zhang SL, Zou H, Gu B, Sun B, Wang ZL (2017) A highly stretchable and washable all-yarn-based self-charging knitting power textile composed of fiber triboelectric nanogenerators and supercapacitors. ACS Nano 11(9):9490–9499

    Article  CAS  Google Scholar 

  120. Sun N, Wen Z, Zhao F, Yang Y, Shao H, Zhou C, Shen Q, Feng K, Peng M, Li Y (2017) All flexible electrospun papers based self-charging power system. Nano Energy 38:210–217

    Article  CAS  Google Scholar 

  121. Shi X, Chen S, Zhang H, Jiang J, Ma Z, Gong S (2019) Portable self-charging power system via integration of a flexible paper-based triboelectric nanogenerator and supercapacitor. ACS Sustain Chem Eng 7(22):18657–18666

    Article  CAS  Google Scholar 

  122. Mariappan VK, Krishnamoorthy K, Pazhamalai P, Natarajan S, Sahoo S, Nardekar SS, Kim S-J (2020) Antimonene dendritic nanostructures: dual-functional material for high-performance energy storage and harvesting devices. Nano Energy 77:105248

    Article  CAS  Google Scholar 

  123. Luo J, Fan F, Jiang T, Wang Z, Tang W, Zhang C, Liu M, Cao G, Wang ZL (2015) Flexible self-charging power unit by integrating microsupercapacitor and triboelectric nanogenerator. Nano Res 8:3934–3943

    Article  Google Scholar 

  124. Song Y, Cheng X, Chen H, Huang J, Chen X, Han M, Su Z, Meng B, Song Z, Zhang H (2016) Integrated self-charging power unit with flexible supercapacitor and triboelectric nanogenerator. J Mater Chem A 4(37):14298–14306

    Article  CAS  Google Scholar 

  125. Luo J, Tang W, Fan FR, Liu C, Pang Y, Cao G, Wang ZL (2016) Transparent and flexible self-charging power film and its application in a sliding unlock system in touchpad technology. ACS Nano 10(8):8078–8086

    Article  CAS  Google Scholar 

  126. Jiang Q, Wu C, Wang Z, Wang AC, He J-H, Wang ZL, Alshareef HN (2018) MXene electrochemical microsupercapacitor integrated with triboelectric nanogenerator as a wearable self-charging power unit. Nano Energy 45:266–272

    Article  CAS  Google Scholar 

  127. Yang Y, Xie L, Wen Z, Chen C, Chen X, Wei A, Cheng P, Xie X, Sun X (2018) Coaxial triboelectric nanogenerator and supercapacitor fiber-based self-charging power fabric. ACS Appl Mater Interfaces 10(49):42356–42362. https://doi.org/10.1021/acsami.8b15104

    Article  CAS  Google Scholar 

  128. Maitra A, Paria S, Karan SK, Bera R, Bera A, Das AK, Si SK, Halder L, De A, Khatua BB (2019) Triboelectric nanogenerator driven self-charging and self-healing flexible asymmetric supercapacitor power cell for direct power generation. ACS Appl Mater Interfaces 11(5):5022–5036. https://doi.org/10.1021/acsami.8b19044

    Article  CAS  Google Scholar 

  129. Xia K, Tang H, Fu J, Tian Y, Xu Z, Lu J, Zhu Z (2020) A high strength triboelectric nanogenerator based on rigid-flexible coupling design for energy storage system. Nano Energy 67:104259

    Article  CAS  Google Scholar 

  130. Zhao M, Nie J, Li H, Xia M, Liu M, Zhang Z, Liang X, Qi R, Wang ZL, Lu X (2019) High-frequency supercapacitors based on carbonized melamine foam as energy storage devices for triboelectric nanogenerators. Nano Energy 55:447–453

    Article  CAS  Google Scholar 

  131. Cong Z, Guo W, Guo Z, Chen Y, Liu M, Hou T, Pu X, Hu W, Wang ZL (2020) Stretchable coplanar self-charging power textile with resist-dyeing triboelectric nanogenerators and microsupercapacitors. ACS Nano 14:5590–5599

    Article  CAS  Google Scholar 

  132. Yang W, Lu X (2019) Triboelectric power generation from heterostructured air-laid paper for breathable and wearable self-charging power system. Adv Mater Technol 4(12):1900745

    Article  CAS  Google Scholar 

  133. Xiong W, Hu K, Li Z, Jiang Y, Li Z, Li Z, Wang X (2019) A wearable system based on core-shell structured peptide-Co9S8 supercapacitor and triboelectric nanogenerator. Nano Energy 66:104149

    Article  CAS  Google Scholar 

  134. Liu M, Cong Z, Pu X, Guo W, Liu T, Li M, Zhang Y, Hu W, Wang ZL (2019) High-energy asymmetric supercapacitor yarns for self-charging power textiles. Adv Funct Mater 29:1806298. https://doi.org/10.1002/adfm.201806298

    Article  CAS  Google Scholar 

  135. Zhang Q, Liang Q, Liao Q, Ma M, Gao F, Zhao X, Song Y, Song L, Xun X, Zhang Y (2018) An amphiphobic hydraulic triboelectric nanogenerator for a self-cleaning and self-charging power system. Adv Funct Mater 28(35):1803117

    Article  Google Scholar 

  136. Zhou C, Yang Y, Sun N, Wen Z, Cheng P, Xie X, Shao H, Shen Q, Chen X, Liu Y (2018) Flexible self-charging power units for portable electronics based on folded carbon paper. Nano Res 11(8):4313–4322

    Article  CAS  Google Scholar 

  137. Hu Y, Wang ZL (2015) Recent progress in piezoelectric nanogenerators as a sustainable power source in self-powered systems and active sensors. Nano Energy 14:3–14

    Article  CAS  Google Scholar 

  138. Choi D, Choi M, Choi WM, Shin H, Park H, Seo J, Park J, Yoon S, Chae SJ, Lee YH (2010) Fully rollable transparent nanogenerators based on graphene electrodes. Adv Mater 22(19):2187–2192

    Article  CAS  Google Scholar 

  139. Chandrasekaran S, Bowen C, Roscow J, Zhang Y, Dang DK, Kim EJ, Misra RDK, Deng L, Chung JS, Hur SH (2019) Micro-scale to nano-scale generators for energy harvesting: self powered piezoelectric, triboelectric and hybrid devices. Phys Rep 792:1–33

    Article  CAS  Google Scholar 

  140. Wang ZL (2017) On Maxwell’s displacement current for energy and sensors: the origin of nanogenerators. Mater Today 20(2):74–82

    Article  Google Scholar 

  141. Li P, Zhai J, Shen B, Zhang S, Li X, Zhu F, Zhang X (2018) Ultrahigh piezoelectric properties in textured (K, Na) NbO3-based lead-free ceramics. Adv Mater 30(8):1705171

    Article  Google Scholar 

  142. Manoharan S, Pazhamalai P, Mariappan VK, Murugesan K, Subramanian S, Krishnamoorthy K, Kim S-J (2021) Proton conducting solid electrolyte-piezoelectric PVDF hybrids: novel bifunctional separator for self-charging supercapacitor power cell. Nano Energy 83:105753

    Article  CAS  Google Scholar 

  143. Song R, Jin H, Li X, Fei L, Zhao Y, Huang H, Chan HL-W, Wang Y, Chai Y, Song R, Wang Y, Chai Y, Lai-Wa Chan H, Huang H, Li X, Zhao Y, Fei L (2015) A rectification-free piezo-supercapacitor with a polyvinylidene fluoride separator and functionalized carbon cloth electrodes. J Mater Chem A 3(29):14963–14970. https://doi.org/10.1039/c5ta03349g

    Article  CAS  Google Scholar 

  144. Parida K, Bhavanasi V, Kumar V, Wang J, Lee PS (2017) Fast charging self-powered electric double layer capacitor. J Power Sour 342:70–78

    Article  CAS  Google Scholar 

  145. Maitra A, Karan SK, Paria S, Das AK, Bera R, Halder L, Si SK, Bera A, Khatua BB (2017) Fast charging self-powered wearable and flexible asymmetric supercapacitor power cell with fish swim bladder as an efficient natural bio-piezoelectric separator. Nano Energy 40:633–645. https://doi.org/10.1016/j.nanoen.2017.08.057

    Article  CAS  Google Scholar 

  146. Rasheed A, He W, Qian Y, Park H, Kang DJ (2020) A flexible supercapacitor type rectifier-free self-charging power unit based on a multifunctional PVDF-ZnO-RGO piezoelectric matrix. ACS Appl Mater Interfaces 12:20891–20900

    Article  CAS  Google Scholar 

  147. Lu Y, Jiang Y, Lou Z, Shi R, Chen D, Shen G (2020) Wearable supercapacitor self-charged by P (VDF-TrFE) piezoelectric separator. Prog Nat Sci Mater Int 30:174–179

    Article  CAS  Google Scholar 

  148. Krishnamoorthy K, Pazhamalai P, Mariappan VK, Nardekar SS, Sahoo S, Kim S-J (2020) Probing the energy conversion process in piezoelectric-driven electrochemical self-charging supercapacitor power cell using piezoelectrochemical spectroscopy. Nat Commun 11(1):1–11

    Article  Google Scholar 

  149. Xi F, Pang Y, Li W, Jiang T, Zhang L, Guo T, Liu G, Zhang C, Wang ZL (2017) Universal power management strategy for triboelectric nanogenerator. Nano Energy 37:168–176

    Article  CAS  Google Scholar 

  150. Zi Y, Guo H, Wang J, Wen Z, Li S, Hu C, Wang ZL (2017) An inductor-free auto-power-management design built-in triboelectric nanogenerators. Nano Energy 31:302–310

    Article  CAS  Google Scholar 

  151. Cheng X, Tang W, Song Y, Chen H, Zhang H, Wang ZL (2019) Power management and effective energy storage of pulsed output from triboelectric nanogenerator. Nano Energy 61:517–532

    Article  CAS  Google Scholar 

  152. Niu S, Wang X, Yi F, Zhou YS, Wang ZL (2015) A universal self-charging system driven by random biomechanical energy for sustainable operation of mobile electronics. Nat Commun 6(1):1–8

    Article  Google Scholar 

  153. Zhang Y, Jia X, Deng L, Guo X, Sun H, Sun B, Liu B, Ma H (2015) Evolution of thermoelectric properties and anisotropic features of Bi2Te3 prepared by high pressure and high temperature. J Alloys Compd 632:514–519. https://doi.org/10.1016/j.jallcom.2015.01.271

    Article  CAS  Google Scholar 

  154. Al-zubaidi A, Ji X, Yu J (2017) Thermal charging of supercapacitors: a perspective. Sustain Energy Fuels 1(7):1457–1474

    Article  CAS  Google Scholar 

  155. Härtel A, Janssen M, Weingarth D, Presser V, van Roij R (2015) Heat-to-current conversion of low-grade heat from a thermocapacitive cycle by supercapacitors. Energy Environ Sci 8(8):2396–2401

    Article  Google Scholar 

  156. Zhao D, Wang H, Khan ZU, Chen JC, Gabrielsson R, Jonsson MP, Berggren M, Crispin X (2016) Ionic thermoelectric supercapacitors. Energy Environ Sci 9(4):1450–1457

    Article  CAS  Google Scholar 

  157. Kim SL, Lin HT, Yu C (2016) Thermally chargeable solid-state supercapacitor. Adv Energy Mater 6(18):1600546

    Article  Google Scholar 

  158. Yang K, Cho K, Yang S, Park Y, Kim S (2019) A laterally designed all-in-one energy device using a thermoelectric generator-coupled micro supercapacitor. Nano Energy 60:667–672

    Article  CAS  Google Scholar 

  159. Pu X, Wang ZL (2021) Self-charging power system for distributed energy: beyond the energy storage unit. Chem Sci 12(1):34–49

    Article  CAS  Google Scholar 

  160. Zhang T, Yang T, Zhang M, Bowen CR, Yang Y (2020) Recent progress in hybridized nanogenerators for energy scavenging. Iscience 23(11):101689

  161. Yang Y, Wang ZL (2015) Hybrid energy cells for simultaneously harvesting multi-types of energies. Nano Energy 14:245–256

    Article  CAS  Google Scholar 

  162. Yang Y, Zhang H, Lee S, Kim D, Hwang W, Wang ZL (2013) Hybrid energy cell for degradation of methyl orange by self-powered electrocatalytic oxidation. Nano Lett 13(2):803–808

    Article  CAS  Google Scholar 

  163. Bae J, Park YJ, Lee M, Cha SN, Choi YJ, Lee CS, Kim JM, Wang ZL (2011) Single-fiber-based hybridization of energy converters and storage units using graphene as electrodes. Adv Mater 23(30):3446–3449

    Article  CAS  Google Scholar 

  164. Wen Z, Yeh M-H, Guo H, Wang J, Zi Y, Xu W, Deng J, Zhu L, Wang X, Hu C (2016) Self-powered textile for wearable electronics by hybridizing fiber-shaped nanogenerators, solar cells, and supercapacitors. Sci Adv 2(10):e1600097

    Article  Google Scholar 

  165. Zi Y, Lin L, Wang J, Wang S, Chen J, Fan X, Yang P, Yi F, Wang ZL (2015) Triboelectric–pyroelectric–piezoelectric hybrid cell for high-efficiency energy-harvesting and self-powered sensing. Adv Mater 27(14):2340–2347

    Article  CAS  Google Scholar 

  166. Qin S, Zhang Q, Yang X, Liu M, Sun Q, Wang ZL (2018) Hybrid piezo/triboelectric-driven self-charging electrochromic supercapacitor power package. Adv Energy Mater 8(23):1800069. https://doi.org/10.1002/aenm.201800069

    Article  CAS  Google Scholar 

  167. He W, Fu X, Zhang D, Zhang Q, Zhuo K, Yuan Z, Ma R (2021) Recent progress of flexible/wearable self-charging power units based on triboelectric nanogenerators. Nano Energy 84:105880

  168. Qin C, Lu A (2021) Flexible, anti-freezing self-charging power system composed of cellulose based supercapacitor and triboelectric nanogenerator. Carbohydr Polym 274:118667

    Article  CAS  Google Scholar 

  169. Yang HJ, Lee J-W, Seo SH, Jeong B, Lee B, Do WJ, Kim JH, Cho JY, Jo A, Jeong HJ (2021) Fully stretchable self-charging power unit with micro-supercapacitor and triboelectric nanogenerator based on oxidized single-walled carbon nanotube/polymer electrodes. Nano Energy 86:106083

    Article  CAS  Google Scholar 

  170. Zhou D, Wang F, Yang J, Fan L (2021) Flexible solid-state self-charging supercapacitor based on symmetric electrodes and piezo-electrolyte. Chem Eng J 406:126825

    Article  CAS  Google Scholar 

  171. Ike IS, Sigalas I, Iyuke S (2016) Understanding performance limitation and suppression of leakage current or self-discharge in electrochemical capacitors: a review. Phys Chem Chem Phys 18(2):661–680

    Article  CAS  Google Scholar 

  172. Xia M, Nie J, Zhang Z, Lu X, Wang ZL (2018) Suppressing self-discharge of supercapacitors via electrorheological effect of liquid crystals. Nano Energy 47:43–50

    Article  CAS  Google Scholar 

  173. Hu D, Yao M, Fan Y, Ma C, Fan M, Liu M (2019) Strategies to achieve high performance piezoelectric nanogenerators. Nano Energy 55:288–304

    Article  CAS  Google Scholar 

  174. Ren Z, Zheng Q, Wang H, Guo H, Miao L, Wan J, Xu C, Cheng S, Zhang H (2020) Wearable and self-cleaning hybrid energy harvesting system based on micro/nanostructured haze film. Nano Energy 67:104243

    Article  CAS  Google Scholar 

  175. Park JH, Rana HH, Lee JY, Park HS (2019) Renewable flexible supercapacitors based on all-lignin-based hydrogel electrolytes and nanofiber electrodes. J Mater Chem A 7(28):16962–16968

    Article  CAS  Google Scholar 

  176. El-Kady MF, Kaner RB (2013) Scalable fabrication of high-power graphene micro-supercapacitors for flexible and on-chip energy storage. Nat Commun 4:1475

    Article  Google Scholar 

  177. Lyu L, Seong K, Kim JM, Zhang W, Jin X, Kim DK, Jeon Y, Kang J, Piao Y (2019) CNT/high mass loading MnO2/graphene-grafted carbon cloth electrodes for high-energy asymmetric supercapacitors. Nano-Micro Lett 11(1):88

    Article  CAS  Google Scholar 

  178. Han H, Cho S (2018) Ex situ fabrication of polypyrrole-coated core-shell nanoparticles for high-performance coin cell supercapacitor. Nanomaterials 8(9):726

    Article  Google Scholar 

  179. Peng H (2015) Fiber-shaped energy harvesting and storage devices, vol 38. Springer, Berlin

    Google Scholar 

  180. Wei XY, Zhu G, Wang ZL (2014) Surface-charge engineering for high-performance triboelectric nanogenerator based on identical electrification materials. Nano Energy 10:83–89

    Article  CAS  Google Scholar 

  181. Yang P, Mai W (2014) Flexible solid-state electrochemical supercapacitors. Nano Energy 8:274–290

    Article  CAS  Google Scholar 

  182. Hu Y, Guan C, Feng G, Ke Q, Huang X, Wang J (2015) Flexible asymmetric supercapacitor based on structure-optimized Mn3O4/reduced graphene oxide nanohybrid paper with high energy and power density. Adv Funct Mater 25(47):7291–7299

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work has been financially supported from the National Aluminium Company Limited (NALCO) via grant no. RP-274. CSR acknowledges Department of Science and Technology (DST)-SERB Early Career Research project (Grant No. ECR/2017/001850), DST-Nanomission (DST/NM/NT/2019/205(G)), Karnataka Science and Technology Promotion Society (KSTePS/VGST-RGS-F/2018-19/GRD NO. 829/315). Surjit Sahoo acknowledges the DST-SERB for a National Post-Doctoral Fellowship (Grant No. PDF/2020/000620).

Author information

Authors and Affiliations

Authors

Contributions

Dr. SS contributed to conceptualization, writing the original draft and editing. Mr. SR contributed to conceptualization, editing the draft. Prof. CSR contributed to conceptualization, project administration, funding acquisition, supervision. Prof. SKN contributed to conceptualization, project administration, funding acquisition, supervision.

Corresponding authors

Correspondence to Chandra Sekhar Rout or Saroj Kumar Nayak.

Ethics declarations

Conflict of interests

The authors declare that they have no conflict of interests.

Additional information

Handling Editor: David Cann.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sahoo, S., Ratha, S., Rout, C.S. et al. Self-charging supercapacitors for smart electronic devices: a concise review on the recent trends and future sustainability. J Mater Sci 57, 4399–4440 (2022). https://doi.org/10.1007/s10853-022-06875-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-022-06875-9

Navigation