Skip to main content
Log in

Enhanced CO2 electroreduction on armchair graphene nanoribbons edge-decorated with copper

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Inspired by the recent experimental synthesis of graphene nanoribbons (GNRs) and theoretical research on their edge-decoration, we comprehensively studied the electrocatalytic performance of GNRs edge-decorated with Cu for CO2 reduction. Compared to zigzag GNRs, the Cu-terminated armchair GNRs with a width of n = 3p + 2 were more efficient catalysts for producing methanol from CO2 with a free energy barrier of less than 0.5 eV, offering the advantages of a lower overpotential and higher selectivity than bulk Cu and other graphene-supported Cu structures. On the other hand, the competing hydrogen evolution reaction could be effectively suppressed by Cu-terminated armchair GNRs. Hence, the edge-decorated GNRs offer great flexibility for tuning the catalytic efficiency and selectivity for CO2 electroreduction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Olah, G. A. Beyond oil and gas: The methanol economy. Angew. Chem., Int. Ed. 2005, 44, 2636–2639.

    Article  Google Scholar 

  2. Olah, G. A.; Prakash, G. K. S.; Goeppert, A. Anthropogenic chemical carbon cycle for a sustainable future. J. Am. Chem. Soc. 2011, 133, 12881–12898.

    Article  Google Scholar 

  3. Chai, G.-L.; Guo, Z.-X. Highly effective sites and selectivity of nitrogen-doped graphene/CNT catalysts for CO2 electrochemical reduction. Chem. Sci. 2016, 7, 1268–1275.

    Article  Google Scholar 

  4. Gao, D. F.; Zhou, H.; Wang, J.; Miao, S.; Yang, F.; Wang, G. X.; Wang, J. G.; Bao, X. H. Size-dependent electrocatalytic reduction of CO2 over Pd nanoparticles. J. Am. Chem. Soc. 2015, 137, 4288–4291.

    Article  Google Scholar 

  5. Gawande, M. B.; Goswami, A.; Felpin, F.-X.; Asefa, T.; Huang, X. X.; Silva, R.; Zou, X. X.; Zboril, R.; Varma, R. S. Cu and Cu-based nanoparticles: Synthesis and applications in catalysis. Chem. Rev. 2016, 116, 3722–3811.

    Article  Google Scholar 

  6. Nie, X. W.; Esopi, M. R.; Janik, M. J.; Asthagiri, A. Selectivity of CO2 reduction on copper electrodes: The role of the kinetics of elementary steps. Angew. Chem., Int. Ed. 2013, 52, 2459–2462.

    Article  Google Scholar 

  7. Li, C. W.; Kanan, M. W. CO2 reduction at low overpotential on Cu electrodes resulting from the reduction of thick Cu2O films. J. Am. Chem. Soc. 2012, 134, 7231–7234.

    Article  Google Scholar 

  8. Chen, Z. Z.; Zhang, X.; Lu, G. Overpotential for CO2 electroreduction lowered on strained penta-twinned Cu nanowires. Chem. Sci. 2015, 6, 6829–6835.

    Article  Google Scholar 

  9. Li, C. W.; Ciston, J.; Kanan, M. W. Electroreduction of carbon monoxide to liquid fuel on oxide-derived nanocrystalline copper. Nature 2014, 508, 504–507.

    Article  Google Scholar 

  10. Reske, R.; Mistry, H.; Behafarid, F.; Roldan Cuenya, B.; Strasser, P. Particle size effects in the catalytic electroreduction of CO2 on Cu nanoparticles. J. Am. Chem. Soc. 2014, 136, 6978–6986.

    Article  Google Scholar 

  11. Li, Y. W.; Chan, S. H.; Sun, Q. Heterogeneous catalytic conversion of CO2: A comprehensive theoretical review. Nanoscale 2015, 7, 8663–8683.

    Article  Google Scholar 

  12. He, Z. Y.; He, K.; Robertson, A. W.; Kirkland, A. I.; Kim, D.; Ihm, J.; Yoon, E.; Lee, G.-D.; Warner, J. H. Atomic structure and dynamics of metal dopant pairs in graphene. Nano Lett. 2014, 14, 3766–3772.

    Article  Google Scholar 

  13. Li, Y. W.; Su, H. B.; Chan, S. H.; Sun, Q. CO2 electroreduction performance of transition metal dimers supported on graphene: A theoretical study. ACS Catal. 2015, 5, 6658–6664.

    Article  Google Scholar 

  14. Ruffieux, P.; Wang, S. Y.; Yang, B.; Sánchez-Sánchez, C.; Liu, J.; Dienel, T.; Talirz, L.; Shinde, P.; Pignedoli, C. A.; Passerone, D. et al. On-surface synthesis of graphene nanoribbons with zigzag edge topology. Nature 2016, 531, 489–492.

    Article  Google Scholar 

  15. Cai, J. M.; Ruffieux, P.; Jaafar, R.; Bieri, M.; Braun, T.; Blankenburg, S.; Muoth, M.; Seitsonen, A. P.; Saleh, M.; Feng, X. L. et al. Atomically precise bottom-up fabrication of graphene nanoribbons. Nature 2010, 466, 470–473.

    Article  Google Scholar 

  16. Kimouche, A.; Ervasti, M. M.; Drost, R.; Halonen, S.; Harju, A.; Joensuu, P. M.; Sainio, J.; Liljeroth, P. Ultra-narrow metallic armchair graphene nanoribbons. Nat. Commun. 2015, 6, 10177.

    Article  Google Scholar 

  17. Chai, G.-L.; Lin, C.-S.; Cheng, W.-D. Planar tetra-coordinate carbon resulting in enhanced third-order nonlinear optical response of metal-terminated graphene nanoribbons. J. Mater. Chem. 2012, 22, 11303–11309.

    Article  Google Scholar 

  18. Wu, M. H.; Gao, Y.; Zhang, Z. Y.; Zeng, X. C. Edge-decorated graphene nanoribbons by scandium as hydrogen storage media. Nanoscale 2012, 4, 915–920.

    Article  Google Scholar 

  19. Wu, M. H.; Zeng, X. C.; Jena, P. Unusual magnetic properties of functionalized graphene nanoribbons. J. Phys. Chem. Lett. 2013, 4, 2482–2488.

    Article  Google Scholar 

  20. Hoffmann, R.; Alder, R. W.; Wilcox, C. F., Jr. Planar tetracoordinate carbon. J. Am. Chem. Soc. 1970, 92, 4992–4993.

    Article  Google Scholar 

  21. Wu, M. H.; Pei, Y.; Zeng, X. C. Planar tetracoordinate carbon strips in edge decorated graphene nanoribbon. J. Am. Chem. Soc. 2010, 132, 5554–5555.

    Article  Google Scholar 

  22. Wang, Z. F.; Li, Q. X.; Zheng, H. X.; Ren, H.; Su, H. B.; Shi, Q. W.; Chen, J. Tuning the electronic structure of graphene nanoribbons through chemical edge modification: A theoretical study. Phys. Rev. B 2007, 75, 113406.

    Article  Google Scholar 

  23. Kresse, G.; Furthmüller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci 1996, 6, 15–50.

    Article  Google Scholar 

  24. Kresse, G.; Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 1996, 54, 11169–11186.

    Article  Google Scholar 

  25. Blöchl, P. E. Projector augmented-wave method. Phys. Rev. B 1994, 50, 17953–17979.

    Article  Google Scholar 

  26. Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865–3868.

    Article  Google Scholar 

  27. Perdew, J. P.; Wang, Y. Accurate and simple analytic representation of the electron-gas correlation energy. Phys. Rev. B 1992, 45, 13244–13249.

    Article  Google Scholar 

  28. Heyd, J.; Scuseria, G. E.; Ernzerhof, M. Hybrid functionals based on a screened Coulomb potential. J. Chem. Phys. 2003, 118, 8207–8215.

    Article  Google Scholar 

  29. Heyd, J.; Scuseria, G. E.; Ernzerhof, M. Erratum: “Hybrid functionals based on a screened Coulomb potential” [J. Chem. Phys. 118, 8207 (2003)]. J. Chem. Phys. 2006, 124, 219906.

    Article  Google Scholar 

  30. Nørskov, J. K.; Rossmeisl, J.; Logadottir, A.; Lindqvist, L.; Kitchin, J. R.; Bligaard, T.; Jónsson, H. Origin of the overpotential for oxygen reduction at a fuel-cell cathode. J. Phys. Chem. B 2004, 108, 17886–17892.

    Article  Google Scholar 

  31. Peterson, A. A.; Abild-Pedersen, F.; Studt, F.; Rossmeisl, J.; Nørskov, J. K. How copper catalyzes the electroreduction of carbon dioxide into hydrocarbon fuels. Energy Environ. Sci. 2010, 3, 1311–1315.

    Article  Google Scholar 

  32. Sun, L.; Li, Q. X.; Ren, H.; Su, H. B.; Shi, Q. W.; Yang, J. L. Strain effect on electronic structures of graphene nanoribbons: A first-principles study. J. Chem. Phys. 2008, 129, 074704.

    Article  Google Scholar 

  33. Sevik, C. Assessment on lattice thermal properties of twodimensional honeycomb structures: Graphene, h-BN, h-MoS2, and h-MoSe2. Phys. Rev. B 2014, 89, 035422.

    Article  Google Scholar 

  34. Son, Y.-W.; Cohen, M. L.; Louie, S. G. Energy gaps in graphene nanoribbons. Phys. Rev. Lett. 2006, 97, 216803.

    Article  Google Scholar 

  35. Du, A. J.; Zhu, Z. H.; Smith, S. C. Multifunctional porous graphene for nanoelectronics and hydrogen storage: New properties revealed by first principle calculations. J. Am. Chem. Soc. 2010, 132, 2876–2877.

    Article  Google Scholar 

  36. Zhu, X.; Su, H. B. Scaling of excitons in graphene nanoribbons with armchair shaped edges. J. Phys. Chem. A 2011, 115, 11998–12003.

    Article  Google Scholar 

  37. Hori, Y.; Kikuchi, K.; Murata, A.; Suzuki, S. Production of methane and ethylene in electrochemical reduction of carbon dioxide at copper electrode in aqueous hydrogencarbonate solution. Chem. Lett. 1986, 15, 897–898.

    Article  Google Scholar 

  38. Kim, J. J.; Summers, D. P.; Frese, K. W. Reduction of CO2 and CO to methane on Cu foil electrodes. J. Electroanal. Chem. Interfacial Electrochem. 1988, 245, 223–244.

    Article  Google Scholar 

  39. Schouten, K. J. P.; Qin, Z. S.; Gallent, E. P.; Koper, M. T. M. Two pathways for the formation of ethylene in CO reduction on single-crystal copper electrodes. J. Am. Chem. Soc. 2012, 134, 9864–9867.

    Article  Google Scholar 

  40. Hori, Y.; Takahashi, I.; Koga, O.; Hoshi, N. Selective formation of C2 compounds from electrochemical reduction of CO2 at a series of copper single crystal electrodes. J. Phys. Chem. B 2002, 106, 15–17.

    Article  Google Scholar 

  41. DeWulf, D. W.; Jin, T.; Bard, A. J. Electrochemical and surface studies of carbon dioxide reduction to methane and ethylene at copper electrodes in aqueous solutions. J. Electrochem. Soc. 1989, 136, 1686–1691.

    Article  Google Scholar 

  42. Ou, L. H. Chemical and electrochemical hydrogenation of CO2 to hydrocarbons on Cu single crystal surfaces: Insights into the mechanism and selectivity from DFT calculations. RSC Adv. 2015, 5, 57361–57371.

    Article  Google Scholar 

  43. Nie, X. W.; Luo, W. J.; Janik, M. J.; Asthagiri, A. Reaction mechanisms of CO2 electrochemical reduction on Cu(111) determined with density functional theory. J. Catal. 2014, 312, 108–122.

    Article  Google Scholar 

  44. Sheng, T.; Wang, D.; Lin, W.-F.; Hu, P.; Sun, S.-G. Insight into CO activation over Cu(100) under electrochemical conditions. Electrochim. Acta 2016, 190, 446–454.

    Article  Google Scholar 

  45. Sakaguchi, H.; Kawagoe, Y.; Hirano, Y.; Iruka, T.; Yano, M.; Nakae, T. Width-controlled sub-nanometer graphene nanoribbon films synthesized by radical-polymerized chemical vapor deposition. Adv. Mater. 2014, 26, 4134–4138.

    Article  Google Scholar 

  46. Hori, Y.; Murata, A.; Takahashi, R. Formation of hydrocarbons in the electrochemical reduction of carbon dioxide at a copper electrode in aqueous solution. J. Chem. Soc., Faraday Trans. 1989, 85, 2309–2326.

    Article  Google Scholar 

  47. Varley, J. B.; Hansen, H. A.; Ammitzbøll, N. L.; Grabow, L. C.; Peterson, A. A.; Rossmeisl, J.; Nørskov, J. K. Ni–Fe–S cubanes in CO2 reduction electrocatalysis: A DFT study. ACS Catal. 2013, 3, 2640–2643.

    Article  Google Scholar 

  48. Skúlason, E.; Tripkovic, V.; Björketun, M. E.; Gudmundsdottir, S.; Karlberg, G.; Rossmeisl, J.; Bligaard, T.; Jónsson, H.; Nørskov, J. K. Modeling the electrochemical hydrogen oxidation and evolution reactions on the basis of density functional theory calculations. J. Phys. Chem. C 2010, 114, 18182–18197.

    Article  Google Scholar 

  49. Nakata, K.; Ozaki, T.; Terashima, C.; Fujishima, A.; Einaga, Y. High-yield electrochemical production of formaldehyde from CO2 and seawater. Angew. Chem., Int. Ed. 2014, 53, 871–874.

    Article  Google Scholar 

Download references

Acknowledgements

This work was partially supported by grants from the National Research Foundation (NRF) of Singapore under its Campus for Research Excellence and Technological Enterprise (CREATE) program and from the National Natural Science Foundation of China (Nos. 11274023 and 21573008), and from the National Basic Research Program of China (No. 2012CB921404).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qiang Sun.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, G., Li, Y., Zhu, H. et al. Enhanced CO2 electroreduction on armchair graphene nanoribbons edge-decorated with copper. Nano Res. 10, 1641–1650 (2017). https://doi.org/10.1007/s12274-016-1362-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-016-1362-9

Keywords

Navigation