Skip to main content
Log in

Paclitaxel-loaded hollow-poly(4-vinylpyridine) nanoparticles enhance drug chemotherapeutic efficacy in lung and breast cancer cell lines

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Paclitaxel (PTX), one of the most effective cytotoxins for the treatment of breast and lung cancer, is limited by its severe side effects and low tumor selectivity. In this work, hollow-poly(4-vinylpyridine) (hollow-p4VP) nanoparticles (NPs) have been used for the first time to generate PTX@p4VP NPs, employing a novel technique in which a gold core in the center of the NP is further oxidized to produce the hollow structure into which PTX molecules can be incorporated. The hollow-p4VP NPs exhibit good physicochemical properties and displayed excellent biocompatibility when tested on blood (no hemolysis) and cell cultures (no cytotoxicity). Interestingly, PTX@p4VP NPs significantly increased PTX cytotoxicity in human lung (A-549) and breast (MCF-7) cancer cells with a significant reduction of PTX IC50 (from 5.9 to 3.6 nM in A-549 and from 13.75 to 4.71 nM in MCF-7). In addition, PTX@p4VP caused a decrease in volume of A-549 and MCF-7 multicellular tumor spheroids (MTS), an in vitro system that mimics in vivo tumors, in comparison to free PTX. This increased antitumoral activity is accompanied by efficient cell internalization and increased apoptosis, especially in lung cancer MTS. Our results offer the first evidence that hollow-p4VP NPs can improve the antitumoral activity of PTX. This system can be used as a new nanoplatform to overcome the limitations of current breast and lung cancer treatments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Jordan, M. A.; Wilson, L. Microtubules as a target for anticancer drugs. Nat. Rev. Cancer 2004, 4, 253–265.

    Article  Google Scholar 

  2. Weaver, B. A. How taxol/paclitaxel kills cancer cells. Mol. Biol. Cell 2014, 25, 2677–2681.

    Article  Google Scholar 

  3. Gelderblom, H.; Verweij, J.; Nooter, K.; Sparreboom, A. Cremophor EL: The drawbacks and advantages of vehicle selection for drug formulation. Eur. J. Cancer 2001, 37, 1590–1598.

    Article  Google Scholar 

  4. Kundranda, M. N.; Niu, J. Albumin-bound paclitaxel in solid tumors: Clinical development and future directions. Drug Des. Devel. Ther. 2015, 9, 3767–3777.

    Article  Google Scholar 

  5. Cerqueira, B. B. S.; Lasham, A.; Shelling, A. N.; Al-Kassas, R. Nanoparticle therapeutics: Technologies and methods for overcoming cancer. Eur. J. Pharm. Biopharm. 2015, 97, 140–151.

    Article  Google Scholar 

  6. Pan, Y.; Gao, J. H.; Zhang, B.; Zhang, X. X.; Xu, B. Colloidosome-based synthesis of a multifunctional nanostructure of silver and hollow iron oxide nanoparticles. Langmuir 2010, 26, 4184–4187.

    Article  Google Scholar 

  7. Wang, X. J.; Feng, J.; Bai, Y. C.; Zhang, Q.; Yin, Y. D. Synthesis, properties, and applications of hollow micro-/nanostructures. Chem. Rev. 2016, 116, 10983–11060.

    Article  Google Scholar 

  8. Chen, Y.; Chen, Y. B.; Nan, J. Y.; Wang, C. P.; Chu, F. X. Hollow poly(N-isopropylacrylamide)-co-poly(acrylic acid) microgels with high loading capacity for drugs. J. Appl. Polym. Sci. 2012, 124, 4678–4685.

    Google Scholar 

  9. Xing, Z. M.; Wang, C. L.; Yan, J.; Zhang, L.; Li, L.; Zha, L. S. pH/temperature dual stimuli-responsive microcapsules with interpenetrating polymer network structure. Colloid Polym. Sci. 2010, 288, 1723–1729.

    Article  Google Scholar 

  10. Singh, N.; Lyon, L. A. Au nanoparticle templated synthesis of pNIPAm nanogels. Chem. Mater. 2007, 19, 719–726.

    Article  Google Scholar 

  11. Zhang, Y.; Jiang, M.; Zhao, J.; Ren, X.; Chen, D.; Zhang, G. A novel route to thermosensitive polymeric core-shell aggregates and hollow spheres in aqueous media. Adv. Funct. Mater. 2005, 15, 695–699.

    Article  Google Scholar 

  12. Yu, J.; Hao, R.; Sheng, F. G.; Xu, L. L.; Li, G. J.; Hou, Y. L. Hollow manganese phosphate nanoparticles as smart multifunctional probes for cancer cell targeted magnetic resonance imaging and drug delivery. Nano Res. 2012, 5, 679–694.

    Article  Google Scholar 

  13. Xing, R. J.; Bhirde, A. A.; Wang, S. J.; Sun, X. L.; Liu, G.; Hou, Y. L.; Chen, X. Y. Hollow iron oxide nanoparticles as multidrug resistant drug delivery and imaging vehicles. Nano Res. 2013, 6, 1–9.

    Article  Google Scholar 

  14. Shen, J. M.; Yin, T.; Tian, X.-Z.; Gao, F.-Y.; Xu, S. Surface charge-switchable polymeric magnetic nanoparticles for the controlled release of anticancer drug. ACS Appl. Mater. Interfaces 2013, 5, 7014–7024.

    Article  Google Scholar 

  15. Xu, Z. Y.; Zhu, S. J.; Wang, M. W.; Li, Y. J.; Shi, P.; Huang, X. Y. Delivery of paclitaxel using PEGylated graphene oxide as a nanocarrier. ACS Appl. Mater. Interfaces 2015, 7, 1355–1363.

    Article  Google Scholar 

  16. Sun, Y. B.; Yu, B.; Wang, G. Y.; Wu, Y. S.; Zhang, X. M.; Chen, Y. M.; Tang, S. Q.; Yuan, Y.; Lee, R. J.; Teng, L. S. et al. Enhanced antitumor efficacy of vitamin E TPGS-emulsified PLGA nanoparticles for delivery of paclitaxel. Colloids Surf. B Biointerfaces 2014, 123, 716–723.

    Article  Google Scholar 

  17. Yu, K. T.; Zhao, J. L.; Zhang, Z. K.; Gao, Y.; Zhou, Y. L.; Teng, L. S.; Li, Y. X. Enhanced delivery of paclitaxel using electrostatically-conjugated herceptin-bearing PEI/PLGA nanoparticles against HER-positive breast cancer cells. Int. J. Pharm. 2016, 497, 78–87.

    Article  Google Scholar 

  18. Adesina, S. K.; Holly, A.; Kramer-Marek, G.; Capala, J.; Akala, E. O. Polylactide-based paclitaxel-loaded nanoparticles fabricated by dispersion polymerization: Characterization, evaluation in cancer cell lines, and preliminary biodistribution studies. J. Pharm. Sci. 2014, 103, 2546–2555.

    Article  Google Scholar 

  19. Lee, K. S.; Chung, H. C.; Im, S. A.; Park, Y. H.; Kim, C. S.; Kim, S. B.; Rha, S. Y.; Lee, M. Y.; Ro, J. Multicenter phase II trial of genexol-PM, a cremophor-free, polymeric micelle formulation of paclitaxel, in patients with metastatic breast cancer. Breast Cancer Res. Treat. 2008, 108, 241–250.

    Article  Google Scholar 

  20. Ahn, H. K.; Jung, M.; Sym, S. J.; Shin, D. B.; Kang, S. M.; Kyung, S. Y.; Park, J. W.; Jeong, S. H.; Cho, E. K. A phase II trial of cremorphor EL-free paclitaxel (Genexol-PM) and gemcitabine in patients with advanced non-small cell lung cancer. Cancer Chemoth. Pharm. 2014, 74, 277–282.

    Article  Google Scholar 

  21. Shahin, M.; Ahmed, S.; Kaur, K.; Lavasanifar, A. Decoration of polymeric micelles with cancer-specific peptide ligands for active targeting of paclitaxel. Biomaterials 2011, 32, 5123–5133.

    Article  Google Scholar 

  22. Shahin, M.; Lavasanifar, A. Novel self-associating poly(ethylene oxide)-b-poly(ε-caprolactone) based drug conjugates and nano-containers for paclitaxel delivery. Int. J. Pharm. 2010, 389, 213–222.

    Article  Google Scholar 

  23. Zhang, L. H.; Zhu, D. W.; Dong, X.; Sun, H. F.; Song, C. X.; Wang, C.; Kong, D. L. Folate-modified lipid-polymer hybrid nanoparticles for targeted paclitaxel delivery. Int. J. Nanomedicine 2015, 10, 2101–2114.

    Google Scholar 

  24. Zhang, X. Y.; Zhang, Y. D. Enhanced antiproliferative and apoptosis effect of paclitaxel-loaded polymeric micelles against non-small cell lung cancers. Tumor Biol. 2015, 36, 4949–4959.

    Article  Google Scholar 

  25. Zhu, Z. S.; Xie, C.; Liu, Q.; Zhen, X.; Zheng, X. C.; Wu, W.; Li, R. T.; Ding, Y.; Jiang, X. Q.; Liu, B. R. The effect of hydrophilic chain length and iRGD on drug delivery from poly(ε-caprolactone)-poly(N-vinylpyrrolidone) nanoparticles. Biomaterials 2011, 32, 9525–9535.

    Article  Google Scholar 

  26. Huang, C.-Y.; Chen, C.-M.; Lee, Y.-D. Synthesis of high loading and encapsulation efficient paclitaxel-loaded poly(n-butyl cyanoacrylate) nanoparticles via miniemulsion. Int. J. Pharm. 2007, 338, 267–275.

    Article  Google Scholar 

  27. He, M.; Zhao, Z. M.; Yin, L. C.; Tang, C.; Yin, C. H. Hyaluronic acid coated poly(butyl cyanoacrylate) nanoparticles as anticancer drug carriers. Int. J. Pharm. 2009, 373, 165–173.

    Article  Google Scholar 

  28. Rezazadeh, M.; Emami, J.; Hasanzadeh, F.; Sadeghi, H.; Minaiyan, M.; Mostafavi, A.; Rostami, M.; Lavasanifar, A. In vivo pharmacokinetics, biodistribution and anti-tumor effect of paclitaxel-loaded targeted chitosan-based polymeric micelle. Drug Deliv. 2016, 23, 1707–1717.

    Google Scholar 

  29. Park, J. S.; Han, T. H.; Lee, K. Y.; Han, S. S.; Hwang, J. J.; Moon, D. H.; Kim, S. Y.; Cho, Y. W. N-acetyl histidineconjugated glycol chitosan self-assembled nanoparticles for intracytoplasmic delivery of drugs: Endocytosis, exocytosis and drug release. J. Control. Release 2006, 115, 37–45.

    Article  Google Scholar 

  30. Hu, F.-Q.; Ren, G.-F.; Yuan, H.; Du, Y.-Z.; Zeng, S. Shell cross-linked stearic acid grafted chitosan oligosaccharide self-aggregated micelles for controlled release of paclitaxel. Colloid Surf. B Biointerfaces 2006, 50, 97–103.

    Article  Google Scholar 

  31. Tripodo, G.; Trapani, A.; Torre, M. L.; Giammona, G.; Trapani, G.; Mandracchia, D. Hyaluronic acid and its derivatives in drug delivery and imaging: Recent advances and challenges. Eur. J. Pharm. Biopharm. 2015, 97, 400–416.

    Article  Google Scholar 

  32. Liu, Y. Y.; Mei, L.; Yu, Q. W.; Xu, C. Q.; Qiu, Y.; Yang, Y. T.; Shi, K. R.; Zhang, Q. Y.; Gao, H. L.; Zhang, Z. R. et al. Multifunctional tandem peptide modified paclitaxel-loaded liposomes for the treatment of vasculogenic mimicry and cancer stem cells in malignant glioma. ACS Appl. Mater. Interfaces 2015, 7, 16792–16801.

    Article  Google Scholar 

  33. Wu, P. Y.; Liu, Q.; Li, R. T.; Wang, J.; Zhen, X.; Yue, G. F.; Wang, H. Y.; Cui, F. B.; Wu, F. L.; Yang, M. et al. Facile preparation of paclitaxel loaded silk fibroin nanoparticles for enhanced antitumor efficacy by locoregional drug delivery. ACS Appl. Mater. Interfaces 2013, 5, 12638–12645.

    Article  Google Scholar 

  34. Socinski, M. A.; Bondarenko, I.; Karaseva, N. A.; Makhson, A. M.; Vynnychenko, I.; Okamoto, I.; Hon, J. K.; Hirsh, V.; Bhar, P.; Zhang, H. et al. Weekly nab-paclitaxel in combination with carboplatin versus solvent-based paclitaxel plus carboplatin as first-line therapy in patients with advanced non-small-cell lung cancer: Final results of a phase III trial. J. Clin. Oncol. 2012, 30, 2055–2062.

    Article  Google Scholar 

  35. Flory, P. J. Principles of Polymer Chemistry; Cornell University Press: Ithaca, NY, 1953.

    Google Scholar 

  36. Contreras-Cáceres, R.; Pacifico, J.; Pastoriza-Santos, I.; Pérez-Juste, J.; Fernández-Barbero, A.; Liz-Marzán, L. M. Au@pNIPAM thermosensitive nanostructures: Control over shell cross-linking, overall dimensions, and core growth. Adv. Funct. Mater. 2009, 19, 3070–3076.

    Article  Google Scholar 

  37. Rodríguez-Fernández, J.; Pérez-Juste, J.; García de Abajo, F. J.; Liz-Marzán, L. M. Seeded growth of submicron Au colloids with quadrupole plasmon resonance modes. Langmuir 2006, 22, 7007–7010.

    Article  Google Scholar 

  38. Contreras-Cáceres, R.; Pastoriza-Santos, I.; Álvarez-Puebla, R. A.; Pérez-Juste, J.; Fernández-Barbero, A.; Liz-Marzán, L. M. Growing Au/Ag nanoparticles within microgel colloids for improved surface-enhanced Raman scattering detection. Chem.—Eur. J. 2010, 16, 9462–9467.

    Article  Google Scholar 

  39. Rodríguez-Fernández, J.; Pérez-Juste, J.; Mulvaney, P.; Liz-Marzán, L. M. Spatially-directed oxidation of gold nanoparticles by Au(III)-CTAB complexes. J. Phys. Chem. B 2005, 109, 14257–14261.

    Article  Google Scholar 

  40. Hou, D. Z.; Xie, C. S.; Huang, K. J.; Zhu, C. H. The production and characteristics of solid lipid nanoparticles (SLNs). Biomaterials 2003, 24, 1781–1785.

    Article  Google Scholar 

  41. Sadeghi-Aliabadi, H.; Asghari, G.; Mostafavi, S. A.; Esmaeili, A. Solvent optimization on Taxol extraction from Taxus baccata L., using HPLC and LC-MS. DARU 2009, 17, 192–198.

    Google Scholar 

  42. Evans, B. C.; Nelson, C. E.; Yu, S. S.; Beavers, K. R.; Kim, A. J.; Li, H. M.; Nelson, H. M.; Giorgio, T. D.; Duvall, C. L. Ex vivo red blood cell hemolysis assay for the evaluation of pH-responsive endosomolytic agents for cytosolic delivery of biomacromolecular drugs. J. Vis. Exp. 2013, e50166.

    Google Scholar 

  43. Melguizo, C.; Cabeza, L.; Prados, J.; Ortiz, R.; Caba, O.; Rama, A. R.; Delgado, Á. V.; Arias, J. L. Enhanced antitumoral activity of doxorubicin against lung cancer cells using biodegradable poly(butylcyanoacrylate) nanoparticles. Drug Des. Devel. Ther. 2015, 9, 6433–6444.

    Google Scholar 

  44. Ortiz, R.; Cabeza, L.; Arias, J. L.; Melguizo, C.; Álvarez, P. J.; Vélez, C.; Clares, B.; Áranega, A.; Prados, J. Poly(butylcyanoacrylate) and poly(ε-caprolactone) nanoparticles loaded with 5-fluorouracil increase the cytotoxic effect of the drug in experimental colon cancer. AAPS J. 2015, 17, 918–929.

    Article  Google Scholar 

  45. Prados, J.; Melguizo, C.; Rama, A. R.; Ortiz, R.; Segura, A.; Boulaiz, H.; Vélez, C.; Caba, O.; Ramos, J. L.; Aránega, A. Gef gene therapy enhances the therapeutic efficacy of doxorubicin to combat growth of MCF-7 breast cancer cells. Cancer Chemother. Pharmacol. 2010, 66, 69–78.

    Article  Google Scholar 

  46. Ho, W. Y.; Yeap, S. K.; Ho, C. L.; Rahim, R. A.; Alitheen, N. B. Development of multicellular tumor spheroid (MCTS) culture from breast cancer cell and a high throughput screening method using the MTT assay. PLoS One 2012, 7, e44640.

    Article  Google Scholar 

  47. Contreras-Cáceres, R.; Schellkopf, L.; Fernández-López, C.; Pastoriza-Santos, I.; Pérez-Juste, J.; Stamm, M. Effect of the cross-linking density on the thermoresponsive behavior of hollow PNIPAM microgels. Langmuir 2015, 31, 1142–1149.

    Article  Google Scholar 

  48. Crassous, J. J.; Ballauff, M.; Drechsler, M.; Schmidt, J.; Talmon, Y. Imaging the volume transition in thermosensitive core–shell particles by cryo-transmission electron microscopy. Langmuir 2006, 22, 2403–2406.

    Article  Google Scholar 

  49. Tokareva, I.; Minko, S.; Fendler, J. H.; Hutter, E. Nanosensors based on responsive polymer brushes and gold nanoparticle enhanced transmission surface plasmon resonance spectroscopy. J. Am. Chem. Soc. 2004, 126, 15950–15951.

    Article  Google Scholar 

  50. Ling, J.; Weitman, S. D.; Miller, M. A.; Moore, R. V.; Bovik, A. C. Direct Raman imaging techniques for study of the subcellular distribution of a drug. Appl. Opt. 2002, 41, 6006–6017.

    Article  Google Scholar 

  51. Kato, Y.; Ozawa, S.; Miyamoto, C.; Maehata, Y.; Suzuki, A.; Maeda, T.; Baba, Y. Acidic extracellular microenvironment and cancer. Cancer Cell Int. 2013, 13, 89.

    Article  Google Scholar 

  52. Gao, W. W.; Chan, J. M.; Farokhzad, O. C. pH-responsive nanoparticles for drug delivery. Mol. Pharm. 2010, 7, 1913–1920.

    Article  Google Scholar 

  53. Narayanan, S.; Pavithran, M.; Viswanath, A.; Narayanan, D.; Mohan, C. C.; Manzoor, K.; Menon, D. Sequentially releasing dual-drug-loaded PLGA-casein core/shell nanomedicine: Design, synthesis, biocompatibility and pharmacokinetics. Acta Biomater. 2014, 10, 2112–2124.

    Article  Google Scholar 

  54. Jain, V.; Swarnakar, N. K.; Mishra, P. R.; Verma, A.; Kaul, A.; Mishra, A. K.; Jain, N. K. Paclitaxel loaded PEGylated gleceryl monooleate based nanoparticulate carriers in chemotherapy. Biomaterials 2012, 33, 7206–7220.

    Article  Google Scholar 

  55. Lu, J. K.; Chuan, X. X.; Zhang, H.; Dai, W. B.; Wang, X. L.; Wang, X. Q.; Zhang, Q. Free paclitaxel loaded PEGylatedpaclitaxel nanoparticles: Preparation and comparison with other paclitaxel systems in vitro and in vivo. Int. J. Pharm. 2014, 471, 525–535.

    Article  Google Scholar 

  56. Jones, A. T.; Gumbleton, M.; Duncan, R. Understanding endocytic pathways and intracellular trafficking: A prerequisite for effective design of advanced drug delivery systems. Adv. Drug Deliv. Rev. 2003, 55, 1353–1357.

    Article  Google Scholar 

  57. Harush-Frenkel, O.; Debotton, N.; Benita, S.; Altschuler, Y. Targeting of nanoparticles to the clathrin-mediated endocytic pathway. Biochem. Biophys. Res. Commun. 2007, 353, 26–32.

    Article  Google Scholar 

  58. Iversen, T.-G.; Skotland, T.; Sandvig, K. Endocytosis and intracellular transport of nanoparticles: Present knowledge and need for future studies. Nano Today 2011, 6, 176–185.

    Article  Google Scholar 

  59. Ozay, O.; Akcali, A.; Otkun, M. T.; Silan, C.; Aktas, N.; Sahiner, N. P(4-VP) based nanoparticles and composites with dual action as antimicrobial materials. Colloids Surf. B Biointerfaces 2010, 79, 460–466.

    Article  Google Scholar 

  60. Sahiner, N.; Yasar, A. O. The generation of desired functional groups on poly(4-vinyl pyridine) particles by post-modification technique for antimicrobial and environmental applications. J. Colloid Interf. Sci. 2013, 402, 327–333.

    Article  Google Scholar 

  61. Silan, C.; Akcali, A.; Otkun, M. T.; Ozbey, N.; Butun, S.; Ozay, O.; Sahiner, N. Novel hydrogel particles and their IPN films as drug delivery systems with antibacterial properties. Colloids Surf. B Biointerfaces 2012, 89, 248–253.

    Article  Google Scholar 

  62. Wu, C. L.; Wang, X.; Zhao, L. Z.; Gao, Y. H.; Ma, R. J.; An, Y. L.; Shi, L. Q. Facile strategy for synthesis of silica/polymer hybrid hollow nanoparticles with channels. Langmuir 2010, 26, 18503–18507.

    Article  Google Scholar 

  63. Mittapalli, R. K.; Liu, X. L.; Adkins, C. E.; Nounou, M. I.; Bohn, K. A.; Terrell, T. B.; Qhattal, H. S.; Geldenhuys, W. J.; Palmieri, D.; Steeg, P. S. et al. Paclitaxel-hyaluronic nanoconjugates prolong overall survival in a preclinical brain metastases of breast cancer model. Mol. Cancer Ther. 2013, 12, 2389–2399.

    Article  Google Scholar 

  64. Zhuang, Y. G.; Xu, B.; Huang, F.; Wu, J. J.; Chen, S. Solid lipid nanoparticles of anticancer drugs against MCF-7 cell line and a murine breast cancer model. Pharmazie 2012, 67, 925–929.

    Google Scholar 

  65. López-Gasco, P.; Iglesias, I.; Benedí, J.; Lozano, R.; Teijón, J. M.; Blanco, M. D. Paclitaxel-loaded polyester nanoparticles prepared by spray-drying technology: In vitro bioactivity evaluation. J. Microencapsul. 2011, 28, 417–429.

    Article  Google Scholar 

  66. López-Gasco, P.; Iglesias, I.; Benedí, J.; Lozano, R.; Blanco, M. D. Characterization and in-vitro bioactivity evaluation of paclitaxel-loaded polyester nanoparticles. Anticancer Drugs 2012, 23, 947–958.

    Google Scholar 

  67. Bernabeu, E.; Helguera, G.; Legaspi, M. J.; Gonzalez, L.; Hocht, C.; Taira, C.; Chiappetta, D. A. Paclitaxel-loaded PCL-TPGS nanoparticles: In vitro and in vivo performance compared with Abraxane®. Colloids Surf. B Biointerfaces 2014, 113, 43–50.

    Article  Google Scholar 

  68. Sahoo, S. K.; Parveen, S.; Panda J. J. The present and future of nanotechnology in human health care. Nanomedicine 2007, 3, 20–31.

    Google Scholar 

  69. Iyer A, K.; Singh, A.; Ganta, S.; Amiji, M. M. Role of integrated cancer nanomedicine in overcoming drug resistance. Adv. Drug Deliv. Rev. 2013, 65, 1784–1802.

    Article  Google Scholar 

  70. Jamieson, L. E.; Harrison, D. J.; Campbell, C. J. Chemical analysis of multicellular tumour spheroids. Analyst 2015, 140, 3910–3920.

    Article  Google Scholar 

  71. Kang, A.; Seo, H. I.; Chung, B. G.; Lee, S. H. Concave microwell array-mediated three-dimensional tumor model for screening anticancer drug-loaded nanoparticles. Nanomedicine 2015, 11, 1153–1161.

    Google Scholar 

  72. Jiang, X. Y.; Xin, H. L.; Gu, J. J.; Du, F. Y.; Feng, C. L.; Xie, Y. K.; Fang, X. L. Enhanced antitumor efficacy by Dglucosamine-functionalized and paclitaxel-loaded poly(ethylene glycol)-co-poly(trimethylene carbonate) polymer nanoparticles. J. Pharm. Sci. 2014, 103, 1487–1496.

    Article  Google Scholar 

  73. Yao, H. J.; Ju, R. J.; Wang, X. X.; Zhang, Y.; Li, R. J.; Yu, Y.; Zhang, L.; Lu, W. L. The antitumor efficacy of functional paclitaxel nanomicelles in treating resistant breast cancers by oral delivery. Biomaterials 2011, 32, 3285–3302.

    Article  Google Scholar 

  74. Yang, T.-M.; Barbone, D.; Fennell, D. A.; Broaddus, V. C. Bcl-2 family proteins contribute to apoptotic resistance in lung cancer multicellular spheroids. Am. J. Respir. Cell Mol. Biol. 2009, 41, 14–23.

    Article  Google Scholar 

  75. Lovitt, C. J.; Shelper, T. B.; Avery, V. M. Evaluation of chemotherapeutics in a three-dimensional breast cancer model. J. Cancer Res. Clin. Oncol. 2015, 141, 951–959.

    Article  Google Scholar 

  76. Zhou, Q.; Ching, A. K.; Leung, W. K.; Szeto, C. Y.; Ho, S. M.; Chan, P. K.; Yuan, Y. F.; Lai, P. B.; Yeo, W.; Wong, N. Novel therapeutic potential in targeting microtubules by nanoparticle albumin-bound paclitaxel in hepatocellular carcinoma. Int. J. Oncol. 2011, 38, 721–731.

    Google Scholar 

Download references

Acknowledgements

This research was funded by FEDER, Plan Nacional de Investigación Científica, Desarrollo e Innovación Tecnológica (I+D+i), by the Consejería de Salud de la Junta de Andalucía through projects (Nos. PI-0476-2016 and P11-CTS-7649). We also thank the financial support of CICYT, Spain, Project CTQ13-48418-P, FEDER funds. R. C.-C. acknowledges the Andalucía Tech program “U-mobility” co-financed by the University of Málaga and the European Community’s Seventh Framework Program (No. 246550). We thank the research grant (FPU) from Ministerio de Educacion Cultura y Deporte.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Consolación Melguizo.

Additional information

These authors contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Contreras-Cáceres, R., Leiva, M.C., Ortiz, R. et al. Paclitaxel-loaded hollow-poly(4-vinylpyridine) nanoparticles enhance drug chemotherapeutic efficacy in lung and breast cancer cell lines. Nano Res. 10, 856–875 (2017). https://doi.org/10.1007/s12274-016-1340-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-016-1340-2

Keywords

Navigation