Skip to main content
Log in

Growth and optical properties of In x Ga1−x P nanowires synthesized by selective-area epitaxy

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Ternary III–V nanowires (NWs) cover a wide range of wavelengths in the solar spectrum and would greatly benefit from being synthesized as position-controlled arrays for improved vertical yield, reproducibility, and tunable optical absorption. Here, we report on successful selective-area epitaxy of metal-particle-free vertical In x Ga1−x P NW arrays using metal–organic vapor phase epitaxy and detail their optical properties. A systematic growth study establishes the range of suitable growth parameters to obtain uniform NW growth over a large array. The optical properties of the NWs were characterized by room-temperature cathodoluminescence spectroscopy. Tunability of the emission wavelength from 870 nm to approximately 800 nm was achieved. Transmission electron microscopy and energy dispersive X-ray measurements performed on cross-section samples revealed a pure wurtzite crystal structure with very few stacking faults and a slight composition gradient along the NW growth axis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Yan, R. X.; Gargas, D.; Yang, P. D. Nanowire photonics. Nat. Photon. 2009, 3, 569–576.

    Article  Google Scholar 

  2. Tomioka, K.; Motohisa, J.; Hara, S.; Fukui, T. Control of InAs nanowire growth directions on Si. Nano Lett. 2008, 8, 3475–3480.

    Article  Google Scholar 

  3. Tomioka, K.; Yoshimura, M.; Fukui, T. A III-V nanowire channel on silicon for high-performance vertical transistors. Nature 2012, 488, 189–192.

    Article  Google Scholar 

  4. Borg, M.; Schmid, H.; Moselund, K. E.; Signorello, G.; Gignac, L.; Bruley, J.; Breslin, C.; Das Kanungo, P.; Werner, P.; Riel, H. Vertical III-V nanowire device integration on Si(100). Nano Lett. 2014, 14, 1914–1920.

    Article  Google Scholar 

  5. Cohin, Y.; Mauguin, O.; Largeau, L.; Patriarche, G.; Glas, F.; Søndergård, E.; Harmand, J. C. Growth of vertical GaAs nanowires on an amorphous substrate via a fiber-textured Si platform. Nano Lett. 2013, 13, 2743–2747.

    Article  Google Scholar 

  6. Garnett, E.; Yang, P. D. Light trapping in silicon nanowire solar cells. Nano Lett. 2010, 10, 1082–1087.

    Article  Google Scholar 

  7. Anttu, N. Shockley-queisser detailed balance efficiency limit for nanowire solar cells. ACS Photon. 2015, 2, 446–453.

    Article  Google Scholar 

  8. Wallentin, J.; Poncela, L. B.; Jansson, A. M.; Mergenthaler, K.; Ek, M.; Jacobsson, D.; Wallenberg, L. R.; Deppert, K.; Samuelson, L.; Hessman, D. et al. Single GaInP nanowire p-i-n junctions near the direct to indirect bandgap crossover point. Appl. Phys. Lett. 2012, 100, 251103.

    Article  Google Scholar 

  9. Standing, A.; Assali, S.; Gao, L.; Verheijen, M. A.; van Dam, D.; Cui, Y. C.; Notten, P. H. L.; Haverkort, J. E. M.; Bakkers, E. P. A. M. Efficient water reduction with gallium phosphide nanowires. Nat. Commun. 2015, 6, 7824.

    Article  Google Scholar 

  10. Wagner, R. S.; Ellis, W. C. Vapor-liquid-solid mechanism of single crystal growth. Appl. Phys. Lett. 1964, 4, 89–90.

    Article  Google Scholar 

  11. Zhuang, X. J.; Ning, C. Z.; Pan, A. L. Composition and bandgap-graded semiconductor alloy nanowires. Adv. Mater. 2012, 24, 13–33.

    Article  Google Scholar 

  12. Jacobsson, D.; Panciera, F.; Tersoff, J.; Reuter, M. C.; Lehmann, S.; Hofmann, S.; Dick, K. A.; Ross, F. M. Interface dynamics and crystal phase switching in GaAs nanowires. Nature 2016, 531, 317–322.

    Article  Google Scholar 

  13. Ameruddin, A. S.; Fonseka, H. A.; Caroff, P.; Wong-Leung, J.; Veld, R. L. M. O. H.; Boland, J. L.; Johnston, M. B.; Tan, H. H.; Jagadish, C. InxGa1–xAs nanowires with uniform composition, pure wurtzite crystal phase and taper-free morphology. Nanotechnology 2015, 26, 205604.

    Article  Google Scholar 

  14. Priante, G.; Patriarche, G.; Oehler, F.; Glas, F.; Harmand, J.-C. Abrupt GaP/GaAs interfaces in self-catalyzed nanowires. Nano Lett. 2015, 15, 6036–6041.

    Article  Google Scholar 

  15. Tomioka, K.; Ikejiri, K.; Tanaka, T.; Motohisa, J.; Hara, S.; Hiruma, K.; Fukui, T. Selective-area growth of III-V nanowires and their applications. J. Mater. Res. 2011, 26, 2127–2141.

    Article  Google Scholar 

  16. Gao, Q.; Saxena, D.; Wang, F.; Fu, L.; Mokkapati, S.; Guo, Y. A.; Li, L.; Wong-Leung, J.; Caroff, P.; Tan, H. H. et al. Selective-area epitaxy of pure wurtzite InP nanowires: High quantum efficiency and room-temperature lasing. Nano Lett. 2014, 14, 5206–5211.

    Article  Google Scholar 

  17. Ishizaka, F.; Hiraya, Y.; Tomioka, K.; Fukui, T. Growth of wurtzite GaP in InP/GaP core–shell nanowires by selectivearea MOVPE. J. Cryst. Growth 2015, 411, 71–75.

    Article  Google Scholar 

  18. Kim, H.; Farrell, A. C.; Senanayake, P.; Lee, W.-J.; Huffaker, D. L. Monolithically integrated InGaAs nanowires on 3D structured silicon-on-insulator as a new platform for full optical links. Nano Lett. 2016, 16, 1833–1839.

    Article  Google Scholar 

  19. Treu, J.; Speckbacher, M.; Saller, K.; Morkö tter, S.; Dö blinger, M.; Xu, X.; Riedl, H.; Abstreiter, G.; Finley, J. J.; Koblmü ller, G. Widely tunable alloy composition and crystal structure in catalyst-free InGaAs nanowire arrays grown by selective area molecular beam epitaxy. Appl. Phys. Lett. 2016, 108, 053110.

    Article  Google Scholar 

  20. Sourribes, M. J. L.; Isakov, I.; Panfilova, M.; Liu, H. Y.; Warburton, P. A. Mobility enhancement by Sb-mediated minimisation of stacking fault density in InAs nanowires grown on silicon. Nano Lett. 2014, 14, 1643–1650.

    Article  Google Scholar 

  21. Farrell, A. C.; Lee, W. J.; Senanayake, P.; Haddad, M. A.; Prikhodko, S. V.; Huffaker, D. L. High-quality InAsSb nanowires grown by catalyst-free selective-area metal-organic chemical vapor deposition. Nano Lett. 2015, 15, 6614–6619.

    Article  Google Scholar 

  22. Ishizaka, F.; Ikejiri, K.; Tomioka, K.; Fukui, T. Indium-rich InGaP nanowires formed on InP (111)A substrates by selective-area metal organic vapor phase epitaxy. Jpn. J. Appl. Phys. 2013, 52, 04CH05.

    Article  Google Scholar 

  23. Mohan, P.; Motohisa, J.; Fukui, T. Controlled growth of highly uniform, axial/radial direction-defined, individually addressable InP nanowire arrays. Nanotechnology 2005, 16, 2903–2907.

    Article  Google Scholar 

  24. Ikejiri, K.; Ishizaka, F.; Tomioka, K.; Fukui, T. Bidirectional growth of indium phosphide nanowires. Nano Lett. 2012, 12, 4770–4774.

    Article  Google Scholar 

  25. Berg, A.; Lenrick, F.; Vainorius, N.; Beech, J. P.; Wallenberg, L. R.; Borgströ m, M. T. Growth parameter design for homogeneous material composition in ternary Ga x In1–x P nanowires. Nanotechnology 2015, 26, 435601.

    Article  Google Scholar 

  26. Fontcuberta i Morral, A.; Colombo, C.; Abstreiter, G.; Arbiol, J.; Morante, J. R. Nucleation mechanism of galliumassisted molecular beam epitaxy growth of gallium arsenide nanowires. Appl. Phys. Lett. 2008, 92, 063112.

    Article  Google Scholar 

  27. Gao, Q.; Dubrovskii, V. G.; Caroff, P.; Wong-Leung, J.; Li, L.; Guo, Y.; Fu, L.; Tan, H. H.; Jagadish, C. Simultaneous selective-area and vapor-liquid-solid growth of InP nanowire arrays. Nano Lett. 2016, 16, 4361–4367.

    Article  Google Scholar 

  28. Uccelli, E.; Arbiol, J.; Magen, C.; Krogstrup, P.; Russo-Averchi, E.; Heiss, M.; Mugny, G.; Morier-Genoud, F.; Nygå rd, J.; Morante, J. R. et al. Three-dimensional multipleorder twinning of self-catalyzed GaAs nanowires on Si substrates. Nano Lett. 2011, 11, 3827–3832.

    Article  Google Scholar 

  29. Kavanagh, K. L.; Salfi, J.; Savelyev, I.; Blumin, M.; Ruda, H. E. Transport and strain relaxation in wurtzite InAs–GaAs core-shell heterowires. Appl. Phys. Lett. 2011, 98, 152103.

    Article  Google Scholar 

  30. Shin, J. C.; Choi, K. J.; Kim, D. Y.; Choi, W. J.; Li, X. L. Characteristics of strain-induced In x Ga1–x As nanowires grown on Si(111) substrates. Cryst. Growth Des. 2012, 12, 2994–2998.

    Article  Google Scholar 

  31. Day, R. W.; Mankin, M. N.; Lieber, C. M. Plateau-rayleigh crystal growth of nanowire heterostructures: Strain-modified surface chemistry and morphological control in one, two, and three dimensions. Nano Lett. 2016, 16, 2830–2836.

    Article  Google Scholar 

  32. Zhu, H. X. The effects of surface and initial stresses on the bending stiffness of nanowires. Nanotechnology 2008, 19, 405703.

    Article  Google Scholar 

  33. Keplinger, M.; Kriegner, D.; Stangl, J.; Mårtensson, T.; Mandl, B.; Wintersberger, E.; Bauer, G. Core-shell nanowires: From the ensemble to single-wire characterization. Nucl. Instrum. Meth. B 2010, 268, 316–319.

    Article  Google Scholar 

  34. Li, X. F.; Wang, B. L.; Lee, K. Y. Size effects of the bending stiffness of nanowires. J. Appl. Phys. 2009, 105, 074306.

    Article  Google Scholar 

  35. Yoshimura, M.; Tomioka, K.; Hiruma, K.; Hara, S.; Motohisa, J.; Fukui, T. Growth and characterization of InGaAs nanowires formed on GaAs(111)B by selective-area metal organic vapor phase epitaxy. Jpn. J. Appl. Phys. 2010, 49, 04DH08.

    Google Scholar 

  36. Kohashi, Y.; Sato, T.; Ikejiri, K.; Tomioka, K.; Hara, S.; Motohisa, J. Influence of growth temperature on growth of InGaAs nanowires in selective-area metal-organic vapor-phase epitaxy. J. Cryst. Growth 2012, 338, 47–51.

    Article  Google Scholar 

  37. Gomyo, A.; Kobayashi, K.; Kawata, S.; Hino, I.; Suzuki, T.; Yuasa, T. Studies of Ga x In1-x P layers grown by metalorganic vapor phase epitaxy; Effects of V/III ratio and growth temperature. J. Cryst. Growth 1986, 77, 367–373.

    Article  Google Scholar 

  38. Ohba, Y.; Ishikawa, M.; Sugawara, H.; Yamamoto, M.; Nakanisi, T. Growth of high-quality InGaAIP epilayers by MOCVD using methyl metalorganics and their application to visible semiconductors lasers. J. Cryst. Growth 1986, 77, 374–379.

    Article  Google Scholar 

  39. Nozaki, C.; Ohba, Y.; Sugawara, H.; Yasuami, S.; Nakanisi, T. Growth temperature dependent atomic arrangements and their role on band-gap of InGaAlP alloys grown by MOCVD. J. Cryst. Growth 1988, 93, 406–411.

    Article  Google Scholar 

  40. Suzuki, T.; Gomyo, A.; Iijima, S.; Kobayashi, K.; Kawata, S.; Hino, I.; Yuasa, T. Band-gap energy anomaly and sublattice ordering in GaInP and AlGaInP grown by metalorganic vapor phase epitaxy. Jpn. J. Appl. Phys. 1988, 27, 2098–2106.

    Article  Google Scholar 

  41. Hageman, P. R.; Bauhuis, G. J.; Olsthoorn, S. M. Influence of Ga precursor choice on ordering degree of MOVPE grown Ga0.5In0.5P. J. Cryst. Growth 1998, 194, 272–275.

    Article  Google Scholar 

  42. Kurtz, S. R.; Olson, J. M.; Kibbler, A. Effect of growth rate on the band gap of Ga0.5In0.5P. Appl. Phys. Lett. 1990, 57, 1922–1924.

    Article  Google Scholar 

  43. Stringfellow, G. B. Organometallic Vapor-Phase Epitaxy: Theory and Practice; 2nd ed.; Academic Press: San Diego, 1999.

  44. Neuhalfen, A. J.; Wessels, B. W. Electronic and photoluminescent properties of InP prepared by flow modulation epitaxy. J. Appl. Phys. 1992, 71, 281–288.

    Article  Google Scholar 

  45. Tomioka, K.; Mohan, P.; Noborisaka, J.; Hara, S.; Motohisa, J.; Fukui, T. Growth of highly uniform InAs nanowire arrays by selective-area MOVPE. J. Cryst. Growth 2007, 298, 644–647.

    Article  Google Scholar 

  46. Ida, M.; Shigekawa, N.; Furuta, T.; Ito, H.; Kobayashi, T. Compositional change near the mask edge in selective InGaAs growth by low-temperature MOCVD. J. Cryst. Growth 1996, 158, 437–442.

    Article  Google Scholar 

  47. Kim, Y.; Joyce, H. J.; Gao, Q.; Tan, H. H.; Jagadish, C.; Paladugu, M.; Zou, J.; Suvorova, A. A. Influence of nanowire density on the shape and optical properties of ternary InGaAs nanowires. Nano Lett. 2006, 6, 599–604.

    Article  Google Scholar 

  48. Zimmermann, G.; Ougazzaden, A.; Gloukhian, A.; Rao, E. V. K.; Delprat, D.; Ramdane, A.; Mircea, A. Selective area MOVPE growth of InP, InGaAs and InGaAsP using TBAs and TBP at different growth conditions. J. Cryst. Growth 1997, 170, 645–649.

    Article  Google Scholar 

  49. Shapiro, J. N.; Scofield, A. C.; Lin, A.; Benzoni, N.; Mariani, G.; Huffaker, D. L. The dependence of alloy composition of InGaAs inserts in GaAs nanopillars on selective-area pattern geometry. arXiv: 1305.3581, 2013.

  50. Persson, A. I.; Fröberg, L. E.; Samuelson, L.; Linke, H. The fabrication of dense and uniform InAs nanowire arrays. Nanotechnology 2009, 20, 225304.

    Article  Google Scholar 

  51. Hertenberger, S.; Rudolph, D.; Bichler, M.; Finley, J. J.; Abstreiter, G.; Koblmüller, G. Growth kinetics in positioncontrolled and catalyst-free InAs nanowire arrays on Si(111) grown by selective area molecular beam epitaxy. J. Appl. Phys. 2010, 108, 114316.

    Article  Google Scholar 

  52. Rudolph, D.; Schweickert, L.; Morkötter, S.; Loitsch, B.; Hertenberger, S.; Becker, J.; Bichler, M.; Abstreiter, G.; Finley, J. J.; Köblmuller, G. Effect of interwire separation on growth kinetics and properties of site-selective GaAs nanowires. Appl. Phys. Lett. 2014, 105, 033111.

    Article  Google Scholar 

  53. Aghdam, F. F.; Liao, H. T.; Huang, Q. Modeling interaction in nanowire growth process toward improved yield. IEEE Trans. Autom. Sci. Eng., in press, DOI: 10.1109/TASE.2015.2499210.

  54. Korgel, B.; Hicks, R. F. A diffusion model for selectivearea epitaxy by metalorganic chemical vapor deposition. J. Cryst. Growth 1995, 151, 204–212.

    Article  Google Scholar 

  55. Chen, X. L.; Lan, Y. C.; Li, J. Y.; Cao, Y. G.; He, M. Radial growth dynamics of nanowires. J. Cryst. Growth 2001, 222, 586–590.

    Article  Google Scholar 

  56. Gibson, S.; LaPierre, R. Study of radial growth in patterned self-catalyzed GaAs nanowire arrays by gas source molecular beam epitaxy. Phys. Status Solidi 2013, 7, 845–849.

    Google Scholar 

  57. Maharjan, A.; Pemasiri, K.; Kumar, P.; Wade, A.; Smith, L. M.; Jackson, H. E.; Yarrison-Rice, J. M.; Kogan, A.; Paiman, S.; Gao, Q. et al. Room temperature photocurrent spectroscopy of single zincblende and wurtzite InP nanowires. Appl. Phys. Lett. 2009, 94, 193115.

    Article  Google Scholar 

  58. Vurgaftman, I.; Meyer, J. R.; Ram-Mohan, L. R. Band parameters for III-V compound semiconductors and their alloys. J. Appl. Phys. 2001, 89, 5815–5875.

    Article  Google Scholar 

  59. Varshni, Y. P. Temperature dependence of the energy gap in semiconductors. Physica 1967, 34, 149–154.

    Article  Google Scholar 

  60. Borgström, M. T.; Immink, G.; Ketelaars, B.; Algra, R.; Bakkers, E. P. A. M. Synergetic nanowire growth. Nat. Nanotechnol. 2007, 2, 541–544.

    Article  Google Scholar 

  61. Verheijen, M. A.; Immink, G.; de Smet, T.; Borgström, M. T.; Bakkers, E. P. A. M. Growth kinetics of heterostructured GaP-GaAs nanowires. J. Amer. Chem. Soc. 2006, 128, 1353–1359.

    Article  Google Scholar 

Download references

Acknowledgements

We thank Q. Gao for helping transfer the NWs from the arrays to Si substrates using a micro-manipulator. Dr. L. Li is acknowledged for preparing the cross-section samples. Drs. S. Naureen and F. Karouta are acknowledged for discussions on sample pre-processing steps. The Australian Research Council is acknowledged for financial support. This work has been made possible through the access to the ACT Node of the Australian National Fabrication Facility and Australian Microscopy and Microanalysis Research Facility. A. Berg gratefully acknowledges scholarships from NanoLund (the Center for Nanoscience at Lund University, Sweden) and the Linnaeus Graduate School at Lund University, as well as funding from the project “Energieffektiv LED-belysning baserad på nanotrådar” financed by the Swedish Foundation for Strategic Research (SSF, project number EM11-0015).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Alexander Berg or Philippe Caroff.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Berg, A., Caroff, P., Shahid, N. et al. Growth and optical properties of In x Ga1−x P nanowires synthesized by selective-area epitaxy. Nano Res. 10, 672–682 (2017). https://doi.org/10.1007/s12274-016-1325-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-016-1325-1

Keywords

Navigation