Skip to main content
Log in

Three-dimensional graphene membrane cathode for high energy density rechargeable lithium-air batteries in ambient conditions

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Lithium-air batteries have attracted significant interest for applications in high energy density mobile power supplies, yet there are considerable challenges to the development of rechargeable Li-air batteries with stable cycling performance under ambient conditions. Here we report a three-dimensional (3D) hydrophobic graphene membrane as a moisture-resistive cathode for high performance Li-air batteries. The 3D graphene membrane features a highly interconnected graphene network for efficient charge transport, a highly porous structure for efficient diffusion of oxygen and electrolyte ions, a large specific surface area for high capacity storage of the insulating discharge product, and a network of highly tortuous hydrophobic channels for O2/H2O selectivity. These channels facilitate O2 ingression while retarding moisture diffusion and ensure excellent charge/discharge cycling stability under ambient conditions. The membrane can thus enable robust Li-air batteries with exceptional performance, including a maximum cathode capacity that exceeds 5,700 mAh/g and excellent recharge cycling behavior (>2,000 cycles at 140 mAh/g, and >100 cycles at 1,400 mAh/g). The graphene membrane air cathode can deliver a lifetime capacity of 100,000–300,000 mAh/g, comparable to that of a typical lithium ion battery cathode. The stable operation of Li-air batteries with significantly improved single charge capacities and lifetime capacities comparable to those of Li-ion batteries may offer an attractive high energy density storage alternative for future mobile power supplies. These batteries may provide much longer battery lives and greatly reduced recharge frequency.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Lopez, N.; Graham, D. J.; McGuire, R.; Alliger, G. E.; Shao-Horn, Y.; Cummins, C. C.; Nocera, D. G. Reversible reduction of oxygen to peroxide facilitated by molecular recognition. Science 2012, 335, 450–453.

    Article  Google Scholar 

  2. Crowther, O.; Meyer, B.; Morgan, M; Salomon, M. Primary Li-air cell development. J. Power Sources 2011, 196, 1498–1502.

    Article  Google Scholar 

  3. Zhang, H.; Zhong, X.; Shaw, J. C.; Liu, L. X.; Huang, Y.; Duan, X. F. Very high energy density silicide–air primary batteries. Energy Environ. Sci. 2013, 6, 2621–2625.

    Article  Google Scholar 

  4. Li, F. J.; Kitaura, H; Zhou, H. S. The pursuit of rechargeable solid-state Li-air batteries. Energy Environ. Sci. 2013, 6, 2302–2311.

    Article  Google Scholar 

  5. Débart, A.; Paterson, A. J.; Bao, J. L.; Bruce, P. G. alpha-MnO2 nanowires: A catalyst for the O2 electrode in rechargeable lithium batteries. Angew. Chem., Int. Ed. 2008, 47, 4521–4524.

    Google Scholar 

  6. Zhang, S. S.; Read, J. Partially fluorinated solvent as a co-solvent for the non-aqueous electrolyte of Li/air battery. J. Power Sources 2011, 196, 2867–2870.

    Article  Google Scholar 

  7. Lu, Y. C.; Gasteiger, H. A.; Parent, M. C.; Chiloyan, V; Shao-Horn, Y. The influence of catalysts on discharge and charge voltages of rechargeable Li–oxygen batteries. Electrochem. Solid-State Lett. 2010, 13, A69–A72.

    Article  Google Scholar 

  8. Zhong, X.; Zhang, H.; Liu, Y.; Bai, J. W.; Liao, L.; Huang, Y.; Duan, X. F. High-capacity silicon–air battery in alkaline solution. ChemSusChem 2012, 5, 177–180.

    Article  Google Scholar 

  9. Jung, H. G.; Hassoun, J.; Park, J. B.; Sun, Y. K.; Scrosati, B. An improved high-performance lithium–air battery. Nat. Chem. 2012, 4, 579–585.

    Article  Google Scholar 

  10. Freunberger, S. A.; Chen, Y. H.; Drewett, N. E.; Hardwick, L. J.; Bardé, F.; Bruce, P. G. The lithium-oxygen battery with ether-based electrolytes. Angew. Chem., Int. Ed. 2011, 50, 8609–8613.

    Article  Google Scholar 

  11. Walker, W.; Giordani, V.; Uddin, J.; Bryantsev, V. S.; Chase, G. V.; Addison, D. A rechargeable Li-O2 battery using a lithium nitrate/N,N-dimethylacetamide electrolyte. J. Am. Chem. Soc. 2013, 135, 2076–2079.

    Article  Google Scholar 

  12. McCloskey, B. D.; Scheffler, R.; Speidel, A.; Bethune, D. S.; Shelby, R. M.; Luntz, A. C. On the efficacy of electrocatalysis in nonaqueous Li-O2 batteries. J. Am. Chem. Soc. 2011, 133, 18038–18041.

    Article  Google Scholar 

  13. Xiao, J.; Wang, D. H.; Xu, W.; Wang, D. Y.; Williford, R. E.; Liu, J.; Zhang, J. G. Optimization of air electrode for Li/air batteries. J. Electrochem. Soc. 2010, 157, A487–A492.

    Article  Google Scholar 

  14. Li, Y. L.; Wang, J. J.; Li, X. F.; Geng, D. S.; Li, R. Y.; Sun, X. L. Superior energy capacity of graphene nanosheets for a nonaqueous lithium-oxygen battery. Chem. Commun. 2011, 47, 9438–9440.

    Article  Google Scholar 

  15. Younesi, S. R.; Urbonaite, S.; Björefors, F.; Edström, K. Influence of the cathode porosity on the discharge performance of the lithium–oxygen battery. J. Power Sources 2011, 196, 9835–9838.

    Article  Google Scholar 

  16. Mitchell, R. R.; Gallant, B. M.; Thompson, C. V.; Shao-Horn, Y. All-carbon-nanofiber electrodes for high-energy rechargeable Li–O2 batteries. Energy Environ. Sci. 2011, 4, 2952–2958.

    Article  Google Scholar 

  17. Lu, Y. C.; Gasteiger, H. A.; Shao-Horn, Y. Catalytic activity trends of oxygen reduction reaction for nonaqueous Li-air batteries. J. Am. Chem. Soc. 2011, 133, 19048–19051.

    Article  Google Scholar 

  18. Zhang, T.; Zhou, H. S. From Li–O2 to Li–air batteries: Carbon nanotubes/ionic liquid gels with a tricontinuous passage of electrons, ions, and oxygen. Angew. Chem. 2012, 124, 11224–11229.

    Article  Google Scholar 

  19. Wang, H. L.; Yang, Y.; Liang, Y. Y.; Zheng, G. Y.; Li, Y. G.; Cui, Y.; Dai, H. J. Rechargeable Li–O2 batteries with a covalently coupled MnCo2O4–graphene hybrid as an oxygen cathode catalyst. Energy Environ. Sci. 2012, 5, 7931–7935.

    Article  Google Scholar 

  20. Oh, S. H.; Black, R.; Pomerantseva, E.; Lee, J.-H.; Nazar, L. F. Synthesis of a metallic mesoporous pyrochlore as a catalyst for lithium–O2 batteries. Nat. Chem. 2012, 4, 1004–1010.

    Article  Google Scholar 

  21. Suntivich, J.; Gasteiger, H. A.; Yabuuchi, N.; Nakanishi, H.; Goodenough, J. B.; Shao-Horn, Y. Design principles for oxygen-reduction activity on perovskite oxide catalysts for fuel cells and metal–air batteries. Nat. Chem. 2011, 3, 546–550.

    Article  Google Scholar 

  22. Xu, J. J.; Wang, Z. L.; Xu, D.; Zhang, L. L.; Zhang, X. B. Tailoring deposition and morphology of discharge products towards high-rate and long-life lithium-oxygen batteries. Nat. Commun. 2013, 4, 2438.

    Google Scholar 

  23. Girishkumar, G.; McCloskey, B.; Luntz, A. C.; Swanson, S.; Wilcke, W. Lithium-air battery: Promise and challenges. J. Phys. Chem. Lett. 2010, 1, 2193–2203.

    Article  Google Scholar 

  24. Chen, L. Y.; Guo, X. W.; Han, J. H.; Liu, P.; Xu, X. D.; Hirata, A.; Chen, M. W. Nanoporous metal/oxide hybrid materials for rechargeable lithium–oxygen batteries. J. Mater. Chem. A 2015, 3, 3620–3626.

    Article  Google Scholar 

  25. Peng, Z. Q.; Freunberger, S. A.; Chen, Y. H.; Bruce, P. G. A reversible and higher-rate Li-O2 battery. Science 2012, 337, 563–566.

    Article  Google Scholar 

  26. Thotiyl, M. M. O.; Freunberger, S. A.; Peng, Z. Q.; Chen, Y. H.; Liu, Z.; Bruce, P. G. A stable cathode for the aprotic Li–O2 battery. Nat. Mater. 2013, 12, 1050–1056.

    Article  Google Scholar 

  27. Li, Y. F.; Huang, Z. P.; Huang, K.; Carnahan, D.; Xing, Y. C. Hybrid Li-air battery cathodes with sparse carbon nanotube arrays directly grown on carbon fiber papers. Energy Environ. Sci. 2013, 6, 3339–3345.

    Article  Google Scholar 

  28. Crowther, O.; Salomon, M. Oxygen selective membranes for Li-air (O2) batteries. Membranes 2012, 2, 216–227.

    Article  Google Scholar 

  29. Crowther, O.; Keeny, D.; Moureau, D. M.; Meyer, B.; Salomon, M.; Hendrickson, M. Electrolyte optimization for the primary lithium metal air battery using an oxygen selective membrane. J. Power Sources 2012, 202, 347–351.

    Article  Google Scholar 

  30. Zhang, J.; Xu, W.; Li, X. H.; Liu, W. Air dehydration membranes for nonaqueous lithium-air batteries. J. Electrochem. Soc. 2010, 157, A940–A946.

    Article  Google Scholar 

  31. Huang, S. T.; Cui, Z. H.; Zhao, N.; Sun, J. Y.; Guo, X. X. Influence of ambient air on cell reactions of Li-air batteries. Electrochim. Acta 2016, 191, 473–478.

    Article  Google Scholar 

  32. Sahapatsombut, U.; Cheng, H.; Scott, K. Modelling of operation of a lithium-air battery with ambient air and oxygen-selective membrane. J. Power Sources 2014, 249, 418–430.

    Article  Google Scholar 

  33. Zhang, T.; Zhou, H. S. A reversible long-life lithium–air battery in ambient air. Nat. Commun. 2013, 4, 1817.

    Article  Google Scholar 

  34. Lim, H. K.; Lim, H. D.; Park, K. Y.; Seo, D. H.; Gwon, H.; Hong, J.; Goddard, W. A.; Kim, H.; Kang, K. Toward a lithium-“air” battery: The effect of CO2 on the chemistry of a lithium-oxygen cell. J. Am. Chem. Soc. 2013, 135, 9733–9742.

    Article  Google Scholar 

  35. Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.; Zhang, Y.; Dubonos, S. V.; Grigorieva, I. V.; Firsov, A. A. Electric field effect in atomically thin carbon films. Science 2004, 306, 666–669.

    Article  Google Scholar 

  36. Bai, J. W.; Zhong, X.; Jiang, S.; Huang, Y.; Duan, X. F. Graphene nanomesh. Nat. Nanotechnol. 2010, 5, 190–194.

    Article  Google Scholar 

  37. Xu, Y. X.; Sheng, K. X.; Li, C.; Shi, G. Q. Self-assembled graphene hydrogel via a one-step hydrothermal process. ACS Nano 2010, 4, 4324–4330.

    Article  Google Scholar 

  38. Hummers, W. S., Jr.; Offeman, R. E. Preparation of graphitic oxide. J. Am. Chem. Soc. 1958, 80, 1339–1340.

    Article  Google Scholar 

  39. He, M.; Zhang, P.; Liu, L.; Liu, B.; Xu, S. Hierarchical porous nitrogen doped three-dimensional graphene as a freestanding cathode for rechargeable lithium-oxygen batteries. Electrochim. Acta 2016, 191, 90–97.

    Article  Google Scholar 

  40. Ren, L.; Hui, K. N.; Hui, K. S.; Liu, Y. D.; Qi, X.; Zhong, J. X.; Du, Y.; Yang, J. P. 3D hierarchical porous graphene aerogel with tunable meso-pores on graphene nanosheets for high-performance energy storage. Sci. Rep. 2015, 5, 14229.

    Article  Google Scholar 

  41. Zhang, J. K.; Li, P. F.; Wang, Z. H.; Qiao, J. S.; Rooney, D.; Sun, W.; Sun, K. N. Three-dimensional graphene–Co3O4 cathodes for rechargeable Li–O2 batteries. J. Mater. Chem. A 2015, 3, 1504–1510.

    Article  Google Scholar 

  42. Zhao, C. T.; Yu, C.; Liu, S. H.; Yang, J.; Fan, X. M.; Huang, H. W.; Qiu, J. S. 3D porous N-doped graphene frameworks made of interconnected nanocages for ultrahigh-rate and long-life Li–O2 batteries. Adv. Funct. Mater. 2015, 25, 6913–6920.

    Article  Google Scholar 

  43. Kim, D. Y.; Kim, M.; Kim, D. W.; Suk, J.; Park, O. O.; Kang, Y. Flexible binder-free graphene paper cathodes for high-performance Li-O2 batteries. Carbon 2015, 93, 625–635.

    Article  Google Scholar 

  44. Guo, X. W.; Liu, P.; Han, J. H.; Ito, Y.; Hirata, A.; Fujita, T.; Chen, M. W. 3D nanoporous nitrogen-doped graphene with encapsulated RuO2 nanoparticles for Li–O2 batteries. Adv. Mater. 2015, 27, 6137–6143.

    Article  Google Scholar 

  45. Zhou, W.; Zhang, H. Z.; Nie, H. J.; Ma, Y. W.; Zhang, Y. N.; Zhang, H. M. Hierarchical micron-sized mesoporous/ macroporous graphene with well-tuned surface oxygen chemistry for high capacity and cycling stability Li–O2 battery. ACS Appl. Mater. Interfaces 2015, 7, 3389–3397.

    Article  Google Scholar 

  46. Kim, D. Y.; Kim, M.; Kim, D. W.; Suk, J.; Park, J. J.; Park, O. O.; Kang, Y. K. Graphene paper with controlled pore structure for high-performance cathodes in Li–O2 batteries. Carbon 2016, 100, 265–272.

    Article  Google Scholar 

  47. Storm, M. M.; Overgaard, M.; Younesi, R.; Reeler, N. E. A.; Vosch, T.; Nielsen, U. G.; Edström, K.; Norby, P. Reduced graphene oxide for Li–air batteries: The effect of oxidation time and reduction conditions for graphene oxide. Carbon 2015, 85, 233–244.

    Article  Google Scholar 

  48. Yoo, E.; Nakamura, J.; Zhou, H. S. N-doped graphene nanosheets for Li-air fuel cells under acidic conditions. Energy Environ. Sci. 2012, 5, 6928–6932.

    Google Scholar 

  49. Xiao, J.; Mei, D. H.; Li, X. L.; Xu, W.; Wang, D. Y.; Graff, G. L.; Bennett, W. D.; Nie, Z. M.; Saraf, L. V.; Aksay, I. A. et al. Hierarchically porous graphene as a lithium–air battery electrode. Nano Lett. 2011, 11, 5071–5078.

    Article  Google Scholar 

  50. Wang, Z. L.; Xu, D.; Xu, J. J.; Zhang, L. L.; Zhang, X. B. Graphene oxide gel-derived, free-standing, hierarchically porous carbon for high-capacity and high-rate rechargeable Li-O2 batteries. Adv. Funct. Mater. 2012, 22, 3699–3705.

    Article  Google Scholar 

  51. Yoo, E.; Zhou, H. S. Li-air rechargeable battery based on metal-free graphene nanosheet catalysts. ACS Nano 2011, 5, 3020–3026.

    Article  Google Scholar 

  52. Lu, Y. C.; Gallant, B. M.; Kwabi, D. G.; Harding, J. R.; Mitchell, R. R.; Whittinghamd, M. S.; Yang, S. H. Lithiumoxygen batteries: Bridging mechanistic understanding and battery performance. Energy Environ. Sci. 2013, 6, 750–768.

    Article  Google Scholar 

  53. Black, R.; Oh, S. H.; Lee, J. H.; Yim, T.; Adams, B.; Nazar, L. F. Screening for superoxide reactivity in Li-O2 batteries: Effect on Li2O2/LiOH crystallization. J. Am. Chem. Soc. 2012, 134, 2902–2905.

    Article  Google Scholar 

  54. Younesi, R.; Hahlin, M.; Treskow, M.; Scheers, J.; Johansson, P.; Edström, K. Ether based electrolyte, LiB(CN)4 salt and binder degradation in the Li-O2 battery studied by hard X-ray photoelectron spectroscopy (HAXPES) J. Phys. Chem. C 2012, 116, 18597–18604.

    Article  Google Scholar 

  55. Younesi, R.; Hahlin, M.; Björefors, F.; Johansson, P.; Edström, K. Li-O2 battery degradation by lithium peroxide (Li2O2): A model study. Chem. Mater. 2013, 25, 77–84.

    Article  Google Scholar 

  56. Meini, S.; Tsiouvaras, N.; Schwenke, K. U.; Piana, M.; Beyer, H.; Lange, L.; Gasteiger, H. A. Rechargeability of Li-air cathodes pre-filled with discharge products using an ether-based electrolyte solution: Implications for cycle-life of Li-air cells. Phys. Chem. Chem. Phys. 2013, 15, 11478–11493.

    Article  Google Scholar 

  57. Burggraaf, A. J. Single gas permeation of thin zeolite (MFI) membranes: Theory and analysis of experimental observations. J. Memb. Sci. 1999, 155, 45–65.

    Article  Google Scholar 

  58. Yang, D. S.; Zewail, A. H. Ordered water structure at hydrophobic graphite interfaces observed by 4D, ultrafast electron crystallography. Proc. Natl. Acad. Sci. USA 2009, 106, 4122–4126.

    Article  Google Scholar 

  59. Zheng, Y.; Su, C. L.; Lu, J.; Loh, K. P. Room-temperature ice growth on graphite seeded by nano-graphene oxide. Angew. Chem., Int. Ed. 2013, 52, 8708–8712.

    Article  Google Scholar 

  60. Wernet, P.; Nordlund, D.; Bergmann, U.; Cavalleri, M.; Odelius, M.; Ogasawara, H.; Näslund, L. Å.; Hirsch, T. K.; Ojamäe, L.; Glatzel, P. et al. The structure of the first coordination shell in liquid water. Science 2004, 304, 995–999.

    Article  Google Scholar 

  61. Leenaerts, O.; Partoens, B.; Peeters, F. M. Adsorption of H2O, NH3, CO, NO2, and NO on graphene: A first-principles study. Phys. Rev. B 2008, 77, 125416.

    Article  Google Scholar 

  62. Mehmood, F.; Pachter, R.; Lu, W. J.; Boeckl, J. J. Adsorption and diffusion of oxygen on single-layer graphene with topological defects. J. Phys. Chem. C 2013, 117, 10366–10374.

    Article  Google Scholar 

  63. Yan, H. J.; Xu, B.; Shi, S. Q.; Ouyang, C. Y. First-principles study of the oxygen adsorption and dissociation on graphene and nitrogen doped graphene for Li-air batteries. J. Appl. Phys. 2012, 112, 104316.

    Article  Google Scholar 

Download references

Acknowledgements

We acknowledge the support from the U.S. Department of Energy, Office of Basic Energy Sciences, Division of Materials Science and Engineering through Award DE-SC0008055. We acknowledge Electron Imaging Center for Nanomachines (EICN) at UCLA for the support of TEM, supported with funding from NIHNCRR shared resources Grant (No. CJX1-443835-WS-29646) and NSF Major Research Instrumentation Grant (No. CHE-0722519).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiangfeng Duan.

Additional information

These authors contributed equally to this work.

Electronic supplementary material

12274_2016_1306_MOESM1_ESM.pdf

Three-dimensional graphene membrane cathode for high energy density rechargeable lithium-air batteries in ambient conditions

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhong, X., Papandrea, B., Xu, Y. et al. Three-dimensional graphene membrane cathode for high energy density rechargeable lithium-air batteries in ambient conditions. Nano Res. 10, 472–482 (2017). https://doi.org/10.1007/s12274-016-1306-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-016-1306-4

Keywords

Navigation