Skip to main content
Log in

Coaxial multi-interface hollow Ni-Al2O3-ZnO nanowires tailored by atomic layer deposition for selective-frequency absorptions

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

In this work, atomic layer deposition (ALD) was employed to fabricate coaxial multi-interface hollow Ni-Al2O3-ZnO nanowires. The morphology, microstructure, and ZnO shell thickness dependent electromagnetic and microwave absorbing properties of these Ni-Al2O3-ZnO nanowires were characterized. Excellent microwave absorbing properties with a minimum reflection loss (RL) of approximately–50 dB at 9.44 GHz were found for the Ni-Al2O3-100ZnO nanowires, which was 10 times of Ni-Al2O3 nanowires. The microwave absorption frequency could be effectively varied by simply adjusting the number of ZnO deposition cycles. The absorption peaks of Ni-Al2O3-100ZnO and Ni-Al2O3-150ZnO nanowires shifted of 5.5 and 6.8 GHz towards lower frequencies, respectively, occupying one third of the investigated frequency band. The enhanced microwave absorption arose from multiple loss mechanisms caused by the unique coaxial multi-interface structure, such as multi-interfacial polarization relaxation, natural and exchange resonances, as well as multiple internal reflections and scattering. These results demonstrate that the ALD method can be used to realize tailored nanoscale structures, making it a highly promising method for obtaining highefficiency microwave absorbers, and opening a potentially novel route for frequency adjustment and microwave imaging fields.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Chen, Y.; Zhang, H. B.; Yang, Y. B.; Wang, M.; Cao, A. Y.; Yu, Z. Z. High-performance epoxy nanocomposites reinforced with three-dimensional carbon nanotube sponge for electromagnetic interference shielding. Adv. Funct. Mater. 2016, 26, 447–455.

    Article  Google Scholar 

  2. Wen, B.; Cao, M. S.; Lu, M. M.; Cao, W. Q.; Shi, H. L.; Liu, J.; Wang, X. X.; Jin, H. B.; Fang, X. Y.; Wang, W. Z. et al. Reduced graphene oxides: Light-weight and high-efficiency electromagnetic interference shielding at elevated temperatures. Adv. Mater. 2014, 26, 3484–3489.

    Article  Google Scholar 

  3. Chen, Y.; Wang, Y. L.; Zhang, H. B.; Li, X. F.; Gui, C. X.; Yu, Z. Z. Enhanced electromagnetic interference shielding efficiency of polystyrene/graphene composites with magnetic Fe3O4 nanoparticles. Carbon 2015, 82, 67–76.

    Article  Google Scholar 

  4. He, J. Z.; Wang, X. X.; Zhang, Y. L.; Cao, M. S. Small magnetic nanoparticles decorating reduced graphene oxides to tune the electromagnetic attenuation capacity. J. Mater. Chem. C 2016, 4, 7130–7140.

    Article  Google Scholar 

  5. Huang, X. G.; Zhang, J.; Xiao, S. R.; Chen, G. S. The cobalt zinc spinel ferrite nanofiber: Lightweight and efficient microwave absorber. J. Am. Ceram. Soc. 2014, 97, 1363–1366.

    Article  Google Scholar 

  6. Zhu, W. M.; Wang, L.; Zhao, R.; Ren, J. W.; Lu, G. Z.; Wang, Y. Q. Electromagnetic and microwave-absorbing properties of magnetic nickel ferrite nanocrystals. Nanoscale 2011, 3, 2862–2864.

    Article  Google Scholar 

  7. Ghodake, J. S.; Kambale, R. C.; Shinde, T. J.; Maskar, P. K.; Suryavanshi, S. S. Magnetic and microwave absorbing properties of Co2+ substituted nickel-zinc ferrites with the emphasis on initial permeability studies. J. Magn. Magn. Mater. 2016, 401, 938–942.

    Article  Google Scholar 

  8. Devkota, J.; Colosimo, P.; Chen, A.; Larin, V. S.; Srikanth, H.; Phan, M. H. Tailoring magnetic and microwave absorption properties of glass-coated soft ferromagnetic amorphous microwires for microwave energy sensing. J. Appl. Phys. 2014, 115, 17A525.

    Article  Google Scholar 

  9. Liu, Q. H.; Cao, Q.; Zhao, X. B.; Bi, H.; Wang, C.; Wu, D. S.; Che, R. C. Insights into size-dominant magnetic microwave absorption properties of CoNi microflowers via off-axis electron holography. ACS Appl. Mater. Interfaces 2015, 7, 4233–4240.

    Article  Google Scholar 

  10. Liu, T.; Pang, Y.; Zhu, M.; Kobayashi, S. Microporous Co@CoO nanoparticles with superior microwave absorption properties. Nanoscale 2014, 6, 2447–2454.

    Article  Google Scholar 

  11. Duan, Y. P.; Liu, Z.; Jing, H.; Zhang, Y. H.; Li, S. Q. Novel microwave dielectric response of Ni/Co-doped manganese dioxides and their microwave absorbing properties. J. Mater. Chem. 2012, 22, 18291–18299.

    Article  Google Scholar 

  12. Tong, G. X.; Hu, Q.; Wu, W. H.; Li, W.; Qian, H. S.; Liang, Y. Submicrometer-sized NiO octahedra: Facile one-pot solid synthesis, formation mechanism, and chemical conversion into Ni octahedra with excellent microwave-absorbing properties. J. Mater. Chem. 2012, 22, 17494–17504.

    Article  Google Scholar 

  13. Duan, Y. P.; Jing, H.; Liu, Z.; Li, S. Q.; Ma, G. J. Controlled synthesis and electromagnetic performance of hollow microstructures assembled of tetragonal MnO2 nano-columns. J. Appl. Phys. 2012, 111, 084109.

    Article  Google Scholar 

  14. Liu, J.; Cao, M. S.; Luo, Q.; Shi, H. L.; Wang, W. Z.; Yuan, J. Electromagnetic property and tunable microwave absorption of 3D nets from nickel chains at elevated temperature. ACS Appl. Mater. Interfaces 2016, 8, 22615–22622.

    Article  Google Scholar 

  15. Mederos-Henry, F.; Pichon, B. P.; Yagang, Y. T.; Delcorte, A.; Bailly, C.; Huynen, I.; Hermans, S. Decoration of nanocarbon solids with magnetite nanoparticles: Towards microwave metamaterial absorbers. J. Mater. Chem. C 2016, 4, 3290–3303.

    Article  Google Scholar 

  16. Wang, M.; Duan, Y. P.; Liu, S. H.; Li, X. G.; Ji, Z. J. Absorption properties of carbonyl-iron/carbon black doublelayer microwave absorbers. J. Magn. Magn. Mater. 2009, 321, 3442–3446.

    Article  Google Scholar 

  17. Tong, G. X.; Liu, F. T.; Wu, W. H.; Du, F. F.; Guan, J. G. Rambutan-like Ni/MWCNT heterostructures: Easy synthesis, formation mechanism, and controlled static magnetic and microwave electromagnetic characteristics. J. Mater. Chem. A 2014, 2, 7373–7382.

    Article  Google Scholar 

  18. Wang, G. Z.; Gao, Z.; Tang, S. W.; Chen, C. Q.; Duan, F. F.; Zhao, S. C.; Lin, S. W.; Feng, Y. H.; Zhou, L.; Qin, Y. Microwave absorption properties of carbon nanocoils coated with highly controlled magnetic materials by atomic layer deposition. ACS Nano 2012, 6, 11009–11017.

    Article  Google Scholar 

  19. Zhou, H.; Wang, J. C.; Zhuang, J. D.; Liu, Q. A covalent route for efficient surface modification of ordered mesoporous carbon as high performance microwave absorbers. Nanoscale 2013, 5, 12502–12511.

    Article  Google Scholar 

  20. Zhang, Y.; Huang, Y.; Chen, H. H.; Huang, Z. Y.; Yang, Y.; Xiao, P. S.; Zhou, Y.; Chen, Y. S. Composition and structure control of ultralight graphene foam for high-performance microwave absorption. Carbon 2016, 105, 438–447.

    Article  Google Scholar 

  21. Wang, J. C.; Xiang, C. S.; Liu, Q.; Pan, Y. B.; Guo, J. K. Ordered mesoporous carbon/fused silica composites. Adv. Funct. Mater. 2008, 18, 2995–3002.

    Article  Google Scholar 

  22. Che, R. C.; Peng, L. M.; Duan, X. F.; Chen, Q.; Liang, X. L. Microwave absorption enhancement and complex permittivity and permeability of Fe encapsulated within carbon nanotubes. Adv. Mater. 2004, 16, 401–405.

    Article  Google Scholar 

  23. Yi, J. W.; Lee, S. B.; Seong, D. G.; Lee, S. K.; Kim, K. H.; Park, O. O. Effect of iron-deposited graphene oxides on the electromagnetic wave absorbing property of polymer composite films with Fe-based hollow magnetic fibers for near-field applications. J. Alloy. Compd. 2016, 663, 196–203.

    Article  Google Scholar 

  24. Li, N.; Huang, Y.; Du, F.; He, X. B.; Lin, X.; Gao, H. J.; Ma, Y. F.; Li, F. F.; Chen, Y. S.; Eklund, P. C. Electromagnetic interference (EMI) shielding of single-walled carbon nanotube epoxy composites. Nano Lett. 2006, 6, 1141–1145.

    Article  Google Scholar 

  25. Xia, T.; Zhang, C.; Oyler, N. A.; Chen, X. B. Hydrogenated TiO2 nanocrystals: A novel microwave absorbing material. Adv. Mater. 2013, 25, 6905–6910.

    Article  Google Scholar 

  26. Han, M. K.; Yin, X. W.; Kong, L.; Li, M.; Duan, W. Y.; Zhang, L. T.; Cheng, L. F. Graphene-wrapped ZnO hollow spheres with enhanced electromagnetic wave absorption properties. J. Mater. Chem. A 2014, 2, 16403–16409.

    Article  Google Scholar 

  27. Li, H. F.; Huang, Y. H.; Sun, G. B.; Yan, X. Q.; Yang, Y.; Wang, J.; Zhang, Y. Directed growth and microwave absorption property of crossed ZnO netlike micro-/ nanostructures. J. Phys. Chem. C 2010, 114, 10088–10091.

    Article  Google Scholar 

  28. Liu, J.; Cao, W. Q.; Jin, H. B.; Yuan, J.; Zhang, D. Q.; Cao, M. S. Enhanced permittivity and multi-region microwave absorption of nanoneedle-like ZnO in the X-band at elevated temperature. J. Mater. Chem. C 2015, 3, 4670–4677.

    Article  Google Scholar 

  29. Zhou, W. C.; Hu, X. J.; Bai, X. X.; Zhou, S. Y.; Sun, C. H.; Yan, J.; Chen, P. Synthesis and electromagnetic, microwave absorbing properties of core–shell Fe3O4-poly(3, 4-ethylenedioxythiophene) microspheres. ACS Appl. Mater. Interfaces 2011, 3, 3839–3845.

    Article  Google Scholar 

  30. Chen, X. N.; Meng, F. C.; Zhou, Z. W.; Tian, X.; Shan, L. M.; Zhu, S. B.; Xu, X. L.; Jiang, M.; Wang, L.; Hui, D. et al. One-step synthesis of graphene/polyaniline hybrids by in situ intercalation polymerization and their electromagnetic properties. Nanoscale 2014, 6, 8140–8148.

    Article  Google Scholar 

  31. Chen, Y.; Liu, X. Y.; Mao, X. Y.; Zhuang, Q. X.; Xie, Z.; Han, Z. W. γ-Fe2O3-MWNT/poly (p-phenylenebenzobisoxazole) composites with excellent microwave absorption performance and thermal stability. Nanoscale 2014, 6, 6440–6447.

    Article  Google Scholar 

  32. Li, Y. N.; Zhao, Y.; Lu, X. Y.; Zhu, Y.; Jiang, L. Selfhealing superhydrophobic polyvinylidene fluoride/Fe3O4@ polypyrrole fiber with core–sheath structures for superior microwave absorption. Nano Res. 2016, 9, 2034–2045.

    Article  Google Scholar 

  33. Ding, Y.; Zhang, L.; Liao, Q. L.; Zhang, G. J.; Liu, S.; Zhang, Y. Electromagnetic wave absorption in reduced graphene oxide functionalized with Fe3O4/Fe nanorings. Nano Res. 2016, 9, 2018–2025.

    Article  Google Scholar 

  34. Wen, B.; Cao, M. S.; Hou, Z. L.; Song, W. L.; Zhang, L.; Lu, M. M.; Jin, H. B.; Fang, X. Y.; Wang, W. Z.; Yuan, J. Temperature dependent microwave attenuation behavior for carbon-nanotube/silica composites Carbon 2013, 65, 124–139.

    Article  Google Scholar 

  35. Liu, Q. H.; Xu, X. H.; Xia, W. X.; Che, R. C.; Chen, C.; Cao, Q.; He, J. G. Dependency of magnetic microwave absorption on surface architecture of Co20Ni80 hierarchical structures studied by electron holography. Nanoscale 2015, 7, 1736–1743.

    Article  Google Scholar 

  36. Zhao, B.; Shao, G.; Fan, B. B.; Zhao, W. Y.; Zhang, R. Fabrication and enhanced microwave absorption properties of Al2O3 nanoflake-coated Ni core–shell composite microspheres. RSC Adv. 2014, 4, 57424–57429.

    Article  Google Scholar 

  37. Lee, C. C.; Chen, D. H. Ag nanoshell-induced dual-frequency electromagnetic wave absorption of Ni nanoparticles. Appl. Phys. Lett. 2007, 90, 193102.

    Article  Google Scholar 

  38. Sun, N. K.; Du, B. S.; Liu, F.; Si, P. Z.; Zhao, M. X.; Zhang, X. Y.; Shi, G. M. Influence of annealing on the microwaveabsorption properties of Ni/TiO2 nanocomposites. J. Alloys Compd. 2013, 577, 533–537.

    Article  Google Scholar 

  39. Wang, B. C.; Zhang, J. L.; Wang, T.; Qiao, L.; Li, F. S. Synthesis and enhanced microwave absorption properties of Ni@Ni2O3 core–shell particles. J. Alloys Compd. 2013, 567, 21–25.

    Article  Google Scholar 

  40. Zhao, B.; Shao, G.; Fan, B. B.; Zhao, W. Y.; Zhang, R. Facile synthesis and enhanced microwave absorption properties of novel hierarchical heterostructures based on a Ni microsphere-CuO nano-rice core–shell composite. Phys. Chem. Chem. Phys. 2015, 17, 6044–6052.

    Article  Google Scholar 

  41. Zhao, B.; Shao, G.; Fan, B. B.; Guo, W. H.; Xie, Y. J.; Zhang, R. Facile synthesis of Ni/ZnO composite: Morphology control and microwave absorption properties. J. Magn. Magn. Mater. 2015, 382, 78–83.

    Article  Google Scholar 

  42. Dong, X. L.; Zhang, X. F.; Huang, H.; Zuo, F. Enhanced microwave absorption in Ni/polyaniline nanocomposites by dual dielectric relaxations. Appl. Phys. Lett. 2008, 92, 013127.

    Article  Google Scholar 

  43. Zhang, D. F.; Xu, F. X.; Lin, J.; Yang, Z. D.; Zhang, M. Electromagnetic characteristics and microwave absorption properties of carbon-encapsulated cobalt nanoparticles in 2–18-GHz frequency range. Carbon 2014, 80, 103–111.

    Article  Google Scholar 

  44. Liu, Q. H.; Cao, Q.; Bi, H.; Liang, C. Y.; Yuan, K. P.; She, W.; Yang, Y. J.; Che, R. C. CoNi@SiO2@TiO2 and CoNi@Air@TiO2 microspheres with strong wideband microwave absorption. Adv. Mater. 2016, 28, 486–490.

    Article  Google Scholar 

  45. Cao, M. S.; Yang, J.; Song, W. L.; Zhang, D. Q.; Wen, B.; Jin, H. B.; Hou, Z. L.; Yuan, J. Ferroferric oxide/multiwalled carbon nanotube vs. polyaniline/ferroferric oxide/multiwalled carbon nanotube multiheterostructures for highly effective microwave absorption. ACS Appl. Mater. Interfaces 2012, 4, 6949–6956.

    Article  Google Scholar 

  46. Jiang, J. J.; Li, D.; Geng, D. Y.; An, J.; He, J.; Liu, W.; Zhang, Z. D. Microwave absorption properties of core double-shell FeCo/C/BaTiO3 nanocomposites. Nanoscale 2014, 6, 3967–3971.

    Article  Google Scholar 

  47. Li, Y.; Cao, W. Q.; Yuan, J.; Wang, D. W.; Cao, M. S. Nd doping of bismuth ferrite to tune electromagnetic properties and increase microwave absorption by magnetic–dielectric synergy. J. Mater. Chem. C 2015, 3, 9276–9282.

    Article  Google Scholar 

  48. Lu, M. M.; Wang, X. X.; Cao, W. Q.; Yuan, J.; Cao, M. S. Carbon nanotube-CdS core–shell nanowires with tunable and high-efficiency microwave absorption at elevated temperature. Nanotechnology 2016, 27, 065702.

    Article  Google Scholar 

  49. Wang, G. Z.; Gao, Z.; Wan, G. P.; Lin, S. W.; Yang, P.; Qin, Y. High densities of magnetic nanoparticles supported on graphene fabricated by atomic layer deposition and their use as efficient synergistic microwave absorbers. Nano Res. 2014, 7, 704–716.

    Article  Google Scholar 

  50. Chen, Y.; Zhang, B.; Gao, Z.; Chen, C. Q.; Zhao, S. C.; Qin, Y. Functionalization of multiwalled carbon nanotubes with uniform polyurea coatings by molecular layer deposition. Carbon 2015, 82, 470–478.

    Article  Google Scholar 

  51. Chen, C. Q.; Li, P.; Wang, G. Z.; Yu, Y.; Duan, F. F.; Chen, C. Y.; Song, W. G.; Qin, Y.; Knez, M. Nanoporous nitrogendoped titanium dioxide with excellent photocatalytic activity under visible light irradiation produced by molecular layer deposition. Angew. Chem., Int. Ed. 2013, 52, 9196–9200.

    Article  Google Scholar 

  52. Zhang, B.; Chen, Y.; Li, J. W.; Pippel, E.; Yang, H. M.; Gao, Z.; Qin, Y. High efficiency Cu-ZnO hydrogenation catalyst: The tailoring of Cu–ZnO interface sites by molecular layer deposition. ACS Catal. 2015, 5, 5567–5573.

    Article  Google Scholar 

  53. Gao, Z.; Dong, M.; Wang, G. Z.; Sheng, P.; Wu, Z. W.; Yang, H. M.; Zhang, B.; Wang, G. F.; Wang, J. G.; Qin, Y. Multiply confined nickel nanocatalysts produced by atomic layer deposition for hydrogenation reactions. Angew. Chem., Int. Ed. 2015, 54, 9006–9010.

    Article  Google Scholar 

  54. Qin, Y.; Kim, Y.; Zhang, L. B.; Lee, S. M.; Yang, R. B.; Pan, A. L.; Mathwig, K.; Alexe, M.; Gösele, U.; Knez, M. Preparation and elastic properties of helical nanotubes obtained by atomic layer deposition with carbon nanocoils as templates. Small 2010, 6, 910–914.

    Article  Google Scholar 

  55. Qin, Y.; Lee, S. M.; Pan, A. L.; Gösele, U.; Knez, M. Rayleigh-instability-induced metal nanoparticle chains encapsulated in nanotubes produced by atomic layer deposition. Nano Lett. 2008, 8, 114–118.

    Article  Google Scholar 

  56. Qin, Y.; Liu, L. F.; Yang, R. B.; Gösele, U.; Knez, M. General assembly method for linear metal nanoparticle chains embedded in nanotubes. Nano Lett. 2008, 8, 3221–3225.

    Article  Google Scholar 

  57. Qin, Y.; Yang, Y.; Scholz, R.; Pippel, E.; Lu, X. L.; Knez, M. Unexpected oxidation behavior of Cu nanoparticles embedded in porous alumina films produced by molecular layer deposition. Nano Lett. 2011, 11, 2503–2509.

    Article  Google Scholar 

  58. Sun, H.; Che, R. C.; You, X.; Jiang, Y. S.; Yang, Z. B.; Deng, J.; Qiu, L. B.; Peng, H. S. Cross-stacking aligned carbonnanotube films to tune microwave absorption frequencies and increase absorption intensities. Adv. Mater. 2014, 26, 8120–8125.

    Article  Google Scholar 

  59. Li, Y.; Fang, X. Y.; Cao, M. S. Thermal frequency shift and tunable microwave absorption in BiFeO3 family. Sci. Rep. 2016, 6, 24837.

    Article  Google Scholar 

  60. Han, D. D.; Xiao, N. R.; Hu, H.; Liu, B.; Song, G. X.; Yan, H. Ultrasmall superparamagnetic Ni nanoparticles embedded in polyaniline as a lightweight and thin microwave absorber. RSC Adv. 2015, 5, 66667–66673.

    Article  Google Scholar 

  61. Shi, X. L.; Cao, M. S.; Yuan, J.; Zhao, Q. L.; Kang, Y. Q.; Fang, X. Y.; Chen, Y. J. Nonlinear resonant and high dielectric loss behavior of CdS/α-Fe2O3 heterostructure nanocomposites. Appl. Phys. Lett. 2008, 93, 183118.

    Article  Google Scholar 

  62. Cao, W. Q.; Wang, X. X.; Yuan, J.; Wang, W. Z.; Cao, M. S. Temperature dependent microwave absorption of ultrathin graphene composites. J. Mater. Chem. C 2015, 3, 10017–10022.

    Article  Google Scholar 

  63. Cao, M. S.; Qin, R. R.; Qiu, C. J.; Zhu, J. Matching design and mismatching analysis towards radar absorbing coatings based on conducting plate. Mater. Design 2003, 24, 391–396.

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Nos. 21376256 and 51132002), the Hundred Talents Program of the Chinese Academy of Sciences, the Hundred Talents Program of Shanxi Province, and Innovation Fund of Science and Technology for Graduate Students of BIT (Nos. 2015CX10029 and 2016CX06004.)

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Maosheng Cao or Yong Qin.

Additional information

These authors contributed equally to this work.

Electronic supplementary material

12274_2016_1302_MOESM1_ESM.pdf

Coaxial multi-interface hollow Ni-Al2O3-ZnO nanowires tailored by atomic layer deposition for selectivefrequency absorptions

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yan, L., Liu, J., Zhao, S. et al. Coaxial multi-interface hollow Ni-Al2O3-ZnO nanowires tailored by atomic layer deposition for selective-frequency absorptions. Nano Res. 10, 1595–1607 (2017). https://doi.org/10.1007/s12274-016-1302-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-016-1302-8

Keywords

Navigation