Skip to main content
Log in

Real-time electrical detection of epidermal skin MoS2 biosensor for point-of-care diagnostics

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

An Erratum to this article was published on 11 February 2017

Abstract

Various approaches have been proposed for point-of-care diagnostics, and in particular, optical detection is preferred because it is relatively simple and fast. At the same time, field-effect transistor (FET)-based biosensors have attracted great attention because they can provide highly sensitive and label-free detection. In this work, we present highly sensitive, epidermal skin-type point-of-care devices with system-level integration of flexible MoS2 FET biosensors, read-out circuits, and light-emitting diode (LEDs) that enable real-time detection of prostate cancer antigens (PSA). Regardless of the physical forms or mechanical stress conditions, our proposed high-performance MoS2 biosensors can detect a PSA concentration of 1 pg·mL–1 without specific surface treatment for anti-PSA immobilization on the MoS2 surface on which we characterize and confirm physisorption of anti-PSA using Kelvin probe force microscopy (KPFM) and tapping-mode atomic force microscopy (tm-AFM). Furthermore, current modulation induced by the binding process was stably maintained for longer than 2–3 min. The results indicate that flexible MoS2-based FET biosensors have great potential for point-of-care diagnostics for prostate cancer as well as other biomarkers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Özen, H.; Sözen, S. PSA isoforms in prostate cancer detection. Eur. Urol. Suppl. 2006, 5, 495–499.

    Article  Google Scholar 

  2. Barbosa, A. I.; Gehlot, P.; Sidapra, K.; Edwards, A. D.; Reis, N. M. Portable smartphone quantitation of prostate specific antigen (PSA) in a fluoropolymer microfluidic device. Biosens. Bioelectron. 2015, 70, 5–14.

    Article  Google Scholar 

  3. Taneja, S. S. Imaging in the diagnosis and management of prostate cancer. Rev. Urol. 2004, 6, 101–113.

    Google Scholar 

  4. Raja, J.; Ramachandran, N.; Munneke, G.; Patel, U. Current status of transrectal ultrasound-guided prostate biopsy in the diagnosis of prostate cancer. Clin. Radiol. 2006, 61, 142–153.

    Article  Google Scholar 

  5. Hricak, H.; Choyke, P. L.; Eberhardt, S. C.; Leibel, S. A.; Scardino, P. T. Imaging prostate cancer: A multidisciplinary perspective. Radiology 2007, 243, 28–53.

    Article  Google Scholar 

  6. Yacoub, J. H.; Verma, S.; Moulton, J. S.; Eggener, S.; Oto, A. Imaging-guided prostate biopsy: Conventional and emerging techniques. Radiographics 2012, 32, 819–837.

    Article  Google Scholar 

  7. von Lode, P. Point-of-care immunotesting: Approaching the analytical performance of central laboratory methods. Clin. Biochem. 2005, 38, 591–606.

    Article  Google Scholar 

  8. Wang, J. Electrochemical biosensors: Towards point-of-care cancer diagnostics. Biosens. Bioelectron. 2006, 21, 1887–1892.

    Article  Google Scholar 

  9. Oh, S. W.; Kim, Y. M.; Kim, H. J.; Kim, S. J.; Cho, J. S.; Choi, E. Y. Point-of-care fluorescence immunoassay for prostate specific antigen. Clin. Chim. Acta 2009, 406, 18–22.

    Article  Google Scholar 

  10. Johnson, E. D.; Kotowski, T. M. Detection of prostate specific antigen by ELISA. J. Forensic Sci. 1993, 38, 250–258.

    Article  Google Scholar 

  11. Healy, D. A.; Hayes, C. J.; Leonard, P.; McKenna, L.; O’ Kennedy, R. Biosensor developments: Application to prostate-specific antigen detection. Trends Biotechnol. 2007, 25, 125–131.

    Article  Google Scholar 

  12. Zheng, G. F.; Patolsky, F.; Cui, Y.; Wang, W. U.; Lieber, C. M. Multiplexed electrical detection of cancer markers with nanowire sensor arrays. Nat. Biotechnol. 2005, 23, 1294–1301.

    Article  Google Scholar 

  13. Cui, Y.; Wei, Q. Q.; Park, H.; Lieber, C. M. Nanowire nanosensors for highly sensitive and selective detection of biological and chemical species. Science 2001, 293, 1289–1292.

    Article  Google Scholar 

  14. Lee, K.; Nair, P. R.; Scott, A.; Alam, M. A.; Janes, D. B. Device considerations for development of conductancebased biosensors. J. Appl. Phys. 2009, 105, 102046.

    Article  Google Scholar 

  15. Yang, W. R.; Ratinac, K. R.; Ringer, S. P.; Thordarson, P.; Gooding, J. J.; Braet, F. Carbon nanomaterials in biosensors: Should you use nanotubes or graphene? Angew. Chem., Int. Ed. 2010, 49, 2114–2138.

    Article  Google Scholar 

  16. Kim, S.; Ju, S.; Back, J. H.; Xuan, Y.; Ye, P. D.; Shim, M.; Janes, D. B.; Mohammadi, S. Fully transparent thin-film transistors based on aligned carbon nanotube arrays and indium tin oxide electrodes. Adv. Mater. 2009, 21, 564–568.

    Article  Google Scholar 

  17. Kim, S.; Kim, S.; Park, J.; Ju, S.; Mohammadi, S. Fully transparent pixel circuits driven by random network carbon nanotube transistor circuitry. ACS Nano 2010, 4, 2994–2998.

    Article  Google Scholar 

  18. Sarkar, D.; Liu, W.; Xie, X. J.; Anselmo, A. C.; Mitragotri, S.; Banerjee, K. MoS2 field-effect transistor for next-generation label-free biosensors. ACS Nano. 2014, 8, 3992–4003.

    Article  Google Scholar 

  19. Wang, L.; Wang, Y.; Wong, J. I.; Palacios, T.; Kong, J.; Yang, H. Y. Functionalized MoS2 nanosheet-based field-effect biosensor for label-free sensitive detection of cancer marker proteins in solution. Small 2014, 10, 1101–1105.

    Article  Google Scholar 

  20. Lee, J.; Dak, P.; Lee, Y.; Park, H.; Choi, W.; Alam, M. A.; Kim, S. Two-dimensional layered MoS2 biosensors enable highly sensitive detection of biomolecules. Sci. Rep. 2014, 4, 7352.

    Article  Google Scholar 

  21. Kalantar-Zadeh, K.; Ou, J. Z. Biosensors based on two-dimensional MoS2. ACS Sens. 2016, 1, 5–16.

    Article  Google Scholar 

  22. Jung, C.; Kim, S. M.; Moon, H.; Han, G.; Kwon, J.; Hong, Y. K.; Omkaram, I.; Yoon, Y.; Kim, S.; Park, J. Highly crystalline CVD-grown multilayer MoSe2 thin film transistor for fast photodetector. Sci. Rep. 2015, 5, 15313.

    Article  Google Scholar 

  23. Kim, S.; Konar, A.; Hwang, W.-S.; Lee, J. H.; Lee, J.; Yang, J.; Jung, C.; Kim, H.; Yoo, J.-B.; Choi, J.-Y. et al. Highmobility and low-power thin-film transistors based on multilayer MoS2 crystals. Nat. Commun. 2012, 3, 1011.

    Article  Google Scholar 

  24. Costantino, H. R.; Griebenow, K.; Langer, R.; Klibanov, A. M. On the pH memory of lyophilized compounds containing protein functional groups. Biotechnol. Bioeng. 1997, 53, 345–348.

    Article  Google Scholar 

  25. Meyers, R. A. Molecular Biology and Biotechnology: A Comprehensive Desk Reference; Wiley-VCH: New York, 1995.

    Google Scholar 

  26. Okamoto, K.; Yoshimoto, K.; Sugawara, Y.; Morita, S. KPFM imaging of Si(1 1 1)5 3 ×5 3 -Sb surface for atom distinction using NC-AFM. Appl. Surf. Sci. 2003, 210, 128–133.

    Google Scholar 

  27. Liscio, A.; Palermo, V.; Samorì, P. Probing local surface potential of quasi-one-dimensional systems: A KPFM study of P3HT nanofibers. Adv. Funct. Mater. 2008, 18, 907–914.

    Article  Google Scholar 

  28. Bieletzki, M.; Hynninen, T.; Soini, T. M.; Pivetta, M.; Henry, C. R.; Foster, A. S.; Esch, F.; Barth, C.; Heiz, U. Topography and work function measurements of thin MgO(001) films on Ag(001) by Nc-AFM and KPFM. Phys. Chem. Chem. Phys. 2010, 12, 3203–3209.

    Article  Google Scholar 

  29. Bao, W. Z.; Cai, X. H.; Kim, D.; Sridhara, K.; Fuhrer, M. S. High mobility ambipolar MoS2 field-effect transistors: Substrate and dielectric effects. Appl. Phys. Lett. 2013, 102, 42104.

    Article  Google Scholar 

  30. Song, W. G.; Kwon, H.-J.; Park, J.; Yeo, J.; Kim, M.; Park, S.; Yun, S.; Kyung, K.-U.; Grigoropoulos, C. P.; Kim, S. et al. High-performance flexible multilayer MoS2 transistors on solution-based polyimide substrates. Adv. Funct. Mater. 2016, 26, 2426–2434.

    Article  Google Scholar 

  31. Hao, G. L.; Huang, Z. Y.; Liu, Y. D.; Qi, X.; Ren, L.; Peng, X. Y.; Yang, L. W.; Wei, X. L.; Zhong, J. X. Electrostatic properties of few-layer MoS2 films. AIP Adv. 2013, 3, 42125.

    Article  Google Scholar 

Download references

Acknowledgements

This research was supported in part by the National Research Foundation of Korea (Nos. NRF-2014M3A9 D7070732, and NRF-2015R1A5A1037548). This research was supported by the Commercializations Promotion Agency for R&D Outcomes (COMPA) funded by the Ministry of Science, ICT and Future Planning (MISP).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Sungho Lee or Sunkook Kim.

Additional information

These authors contributed equally to this work.

An erratum to this article is available at http://dx.doi.org/10.1007/s12274-017-1499-1.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yoo, G., Park, H., Kim, M. et al. Real-time electrical detection of epidermal skin MoS2 biosensor for point-of-care diagnostics. Nano Res. 10, 767–775 (2017). https://doi.org/10.1007/s12274-016-1289-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-016-1289-1

Keywords

Navigation