Skip to main content
Log in

High-performance heterogeneous complementary inverters based on n-channel MoS2 and p-channel SWCNT transistors

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Heterogeneous complementary inverters composed of bi-layer molybdenum disulfide (MoS2) and single-walled carbon-nanotube (SWCNT) networks are designed, and n-type MoS2/p-type SWCNT inverters are fabricated with a backgated structure. Field-effect transistors (FETs) based on the MoS2 and SWCNT networks show high electrical performance with large ON/OFF ratios up to 106 and 105 for MoS2 and SWCNT, respectively. The MoS2/SWCNT complementary inverters exhibit V in-V out signal matching and achieve excellent performances with a high peak voltage gain of 15, a low static-power consumption of a few nanowatts, and a high noise margin of 0.45VDD, which are suitable for future logic-circuit applications. The inverter performances are affected by the channel width-to-length ratios (W/L) of the MoS2-FETs and SWCNT-FETs. Therefore, W/L should be optimized to achieve a tradeoff between the gain and the power consumption.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.; Zhang, Y.; Dubonos, S. V.; Grigorieva, I. V.; Firsov, A. A. Electric field effect in atomically thin carbon films. Science 2004, 306, 666–669.

    Article  Google Scholar 

  2. Wang, Q. H.; Kalantar-Zadeh, K.; Kis, A; Coleman, J. N.; Strano, M. S. Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nat. Nanotechnol. 2012, 7, 699–712.

    Article  Google Scholar 

  3. Novoselov, K. S.; Jiang, D.; Schedin, F.; Booth, T. J.; Khotkevich, V. V.; Morozov, S. V.; Geim, A. K. Two-dimensional atomic crystals. Proc. Natl. Acad. Sci. USA 2005, 102, 10451–10453.

    Article  Google Scholar 

  4. Bolotin, K. I.; Sikes, K. J.; Jiang, Z.; Klima, M.; Fudenberg, G.; Hone, J.; Kim, P.; Stormer, H. L. Ultrahigh electron mobility in suspended graphene. Solid State Commun. 2008, 146, 351–355.

    Article  Google Scholar 

  5. Ferain, I.; Colinge, C. A.; Colinge, J. P. Multigate transistors as the future of classical metal-oxide-semiconductor field-effect transistors. Nature 2011, 479, 310–316.

    Article  Google Scholar 

  6. Mak, K. F.; Lee, C.; Hone, J.; Shan, J.; Heinz, T. F. Atomically thin MoS2: Anew direct-gap semiconductor. Phys. Rev. Lett. 2010, 105, 136805.

    Article  Google Scholar 

  7. Kam, K. K.; Parkinson, B. A. Detailed photocurrent spectroscopy of the semiconducting group VIB transition metal dichalcogenides. J. Phys. Chem. 1982, 86, 463–467.

    Article  Google Scholar 

  8. Radisavljevic, B.; Radenovic, A.; Brivio, J.; Giacometti, V.; Kis. A. Single-layer MoS2 transistors. Nat. Nanotechnol. 2011, 6, 147–150.

    Article  Google Scholar 

  9. Radisavljevic, B.; Whitwick, M. B.; Kis, A. Integrated circuits and logic operations based on single-layer MoS2. ACS Nano 2011, 5, 9934–9938.

    Article  Google Scholar 

  10. Huang, J.; Somu, S.; Busnaina, A. A molybdenum disulfide/carbon nanotube heterogeneous complementary inverter. Nanotechnology 2012, 23, 335203.

    Article  Google Scholar 

  11. Cho, A. J.; Park, K. C.; Kwon, J. Y. A high-performance complementary inverter based on transition metal dichalcogenide field-effect transistors. Nanoscale Res. Lett. 2015, 10, 115.

    Article  Google Scholar 

  12. Jeon, P. J.; Kim, J. S.; Lim, J. Y.; Cho, Y.; Pezeshki, A.; Lee, H. S.; Yu, S.; Min, S. W.; Im, S. Low power consumption complementary inverters with n-MoS2 and p-WSe2 dichalcogenide nanosheets on glass for logic and light-emitting diode circuits. ACS Appl. Mater. Interfaces 2015, 7, 22333–22340.

    Article  Google Scholar 

  13. Lee, H. S.; Shin, J. M.; Jeon, P. J.; Lee, J.; Kim, J. S.; Hwang, H. C.; Park, E.; Yoon, W.; Ju, S. Y.; Im, S. Few- layer MoS2-organic thin-film hybrid complementary inverter pixel fabricated on a glass substrate. Small 2015, 11, 2132–2138.

    Article  Google Scholar 

  14. Su, Y.; Kshirsagar, C. U.; Robbins, M. C.; Haratipour, N.; Koester, S. J. Symmetric complementary logic inverter using integrated black phosphorus and MoS2 transistors. 2D Mater. 2016, 3, 011006.

    Article  Google Scholar 

  15. Pezeshki, A.; Shokouh, S. H. H.; Jeon, P. J.; Shackery, I.; Kim, J. S.; Oh, I. K.; Jun, S. C.; Kim, H.; Im, S. Static and dynamic performance of complementary inverters based on nanosheet α-MoTe2 p-channel and MoS2 n-channel transistors. ACS Nano 2016, 10, 1118–1125.

    Article  Google Scholar 

  16. Wei, B. Q.; Vajtai, R.; Ajayan, P. M. Reliability and current carrying capacity of carbon nanotubes. Appl. Phys. Lett. 2001, 79, 1172–1174.

    Article  Google Scholar 

  17. Dürkop, T.; Getty, S. A.; Cobas, E.; Fuhrer, M. S. Extraordinary mobility in semiconducting carbon nanotubes. Nano Lett. 2004, 4, 35–39.

    Article  Google Scholar 

  18. Javey, A.; Guo, J.; Wang, Q.; Lundstrom, M.; Dai, H. J. Ballistic carbon nanotube field-effect transistors. Nature 2003, 424, 654–657.

    Article  Google Scholar 

  19. Hu, L. B.; Hecht, D. S.; Grüner, G. Carbon nanotube thin films: Fabrication, properties, and applications. Chem. Rev. 2010, 110, 5790–5844.

    Article  Google Scholar 

  20. Lau, P. H.; Takei, K.; Wang, C.; Ju, Y.; Kim, J.; Yu, Z. B.; Takahashi, T.; Cho, G.; Javey, A. Fully printed, high performance carbon nanotube thin-film transistors on flexible substrates. Nano Lett. 2013, 13, 3864–3869.

    Article  Google Scholar 

  21. Dresselhaus, M. S.; Jorio, A.; Hofmann, M.; Dresselhaus, G.; Saito, R. Perspectives on carbon nanotubes and graphene Raman spectroscopy. Nano Lett. 2010, 10, 751–758.

    Article  Google Scholar 

  22. Benameur, M. M.; Radisavljevic, B.; Héron, J. S.; Sahoo1, S.; Berger, H.; Kis, A. Visibility of dichalcogenide nanolayers. Nanotechnology 2011, 22, 125706.

    Article  Google Scholar 

  23. Li, H.; Zhang, Q.; Yap, C. C. R.; Tay, B. K.; Edwin, T. H. T.; Olivier, A.; Baillargeat, D. From bulk to monolayer MoS2: Evolution of Raman scattering. Adv. Funct. Mater. 2012, 22, 1385–1390.

    Article  Google Scholar 

  24. Lee, C.; Yan, H. G.; Brus, L. E.; Heinz, T. F.; Hone, J.; Ryu, S. Anomalous lattice vibrations of single-and few-layer MoS2. ACS Nano 2010, 4, 2695–2700.

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (Nos. 51672154, 51372130, and 61401251), Open Research Fund Program of the State Key Laboratory of Low-Dimensional Quantum Physics (No. KF201517), and Open Foundation of State Key Laboratory of Electronic Thin Films and Integrated Devices (No. KFJJ201402).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dan Xie.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Z., Xie, D., Dai, R. et al. High-performance heterogeneous complementary inverters based on n-channel MoS2 and p-channel SWCNT transistors. Nano Res. 10, 276–283 (2017). https://doi.org/10.1007/s12274-016-1286-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-016-1286-4

Keywords

Navigation