Skip to main content
Log in

High-performance MoS2/p+-Si heterojunction field-effect transistors by interface modulation

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Molybdenum disulfide (MoS2), one of transition metal dichalcogenides, is a promising semiconductor material for electronic or optoelectronic devices due to its favorably electronic properties. However, in metal-oxide semiconductor field-effect transistor (MOSFET) structures using MoS2, electrical performances such as mobility and subthreshold swing are suppressed by the interface trap density between the channel and dielectric layers. Moreover, the electrical stability of such structures is compromised due to interface traps and that can be analyzed such as current hysteresis and transient characteristics. Here, we demonstrate MoS2 heterojunction field-effect transistors (HFET) by applying MoS2/p+-Si heterojunctions and achieve high performance characteristics, including a mobility of 636.19 cm2/(V·s), a subthreshold swing of 67.4 mV/dec, minimal hysteresis of 0.05 V, and minimized transient characteristics. However, the HFET devices with varying the channel length demonstrated degradation of electrical performance with increasing the overlap area of the channel and dielectric layers. These results regarding MoS2/p+-Si HFETs resulted in the structural optimization of high-performance electronic devices for practical applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Deng, Y. X.; Luo, Z.; Conrad, N. J.; Liu, H.; Gong, Y. J.; Najmaei, S.; Ajayan, P. M.; Lou, J.; Xu, X. F.; Ye, P. D. Black phosphorusmonolayer MoS2 van der Waals heterojunction p—n diode. ACS Nano 2014, 8, 8292–8299.

    Article  CAS  Google Scholar 

  2. Wu, J. Y.; Chun, Y. T.; Li, S. P.; Zhang, T.; Chu, D. P. Electrical rectifying and photosensing property of Schottky diode based on MoS2. ACS Appl. Mater. Interfaces 2018, 10, 24613–24619.

    Article  CAS  Google Scholar 

  3. Lee, J.; Duong, N. T.; Park, D. Y.; Park, C. H.; Jeong, B. G.; Jeong, M. S. Carrier transport through near-ideal interface for WSe2 van der Waals homojunction diode. Appl. Surf. Sci. 2021, 542, 148499.

    Article  CAS  Google Scholar 

  4. Song, D. Y.; Chu, D. L.; Lee, S. K.; Pak, S. W.; Kim, E. K. High photoresponsivity from multilayer MoS2/Si heterojunction diodes formed by vertically stacking. J. Appl. Phys. 2017, 122, 124505.

    Article  Google Scholar 

  5. Wang, J. L.; Yao, Q.; Huang, C. W.; Zou, X. M.; Liao, L.; Chen, S. S.; Fan, Z. Y.; Zhang, K.; Wu, W.; Xiao, X. H. et al. High Mobility MoS2 transistor with low Schottky barrier contact by using atomic thick h-BN as a tunneling layer. Adv. Mater. 2016, 28, 8302–8308.

    Article  CAS  Google Scholar 

  6. Du, J. Y.; Ge, C.; Riahi, H.; Guo, E. J.; He, M.; Wang, C.; Yang, G. Z.; Jin, K. J. Dual-gated MoS2 transistors for synaptic and programmable logic functions. Adv. Electron. Mater. 2020, 6, 1901408.

    Article  CAS  Google Scholar 

  7. Tang, H. L.; Chiu, M. H.; Tseng, C. C.; Yang, S. H.; Hou, K. J.; Wei, S. Y.; Huang, J. K.; Lin, Y. F.; Lien, C. H.; Li, L. J. Multilayer graphene—WSe2 heterostructures for WSe2 transistors. ACS Nano 2017, 11, 12817–12823.

    Article  CAS  Google Scholar 

  8. Chu, D.; Lee, Y. H.; Kim, E. K. Selective control of electron and hole tunneling in 2D assembly. Sci. Adv. 2017, 3, e1602726.

    Article  Google Scholar 

  9. Kim, T.; Kim, Y.; Kim, E. K. Characteristics of Cl-doped MoS2 field-effect transistors. Sens. Actuators A: Phys. 2020, 312, 112165.

    Article  CAS  Google Scholar 

  10. Guo, N.; Xiao, L.; Gong, F.; Luo, M.; Wang, F.; Jia, Y.; Chang, H. C.; Liu, J. K.; Li, Q.; Wu, Y. et al. Light-driven WSe2—ZnO junction field-effect transistors for high-performance photodetection. Adv. Sci. 2020, 7, 1901637.

    Article  CAS  Google Scholar 

  11. Shin, G. H.; Park, C.; Lee, K. J.; Jin, H. J.; Choi, S. Y. Ultrasensitive phototransistor based on WSe2—MoS2 van der Waals heterojunction. Nano Lett. 2020, 20, 5741–5748.

    Article  CAS  Google Scholar 

  12. Wang, H. Y.; Li, Z. X.; Li, D. Y.; Xu, X.; Chen, P.; Pi, L. J.; Zhou, X.; Zhai, T. Y. Junction field-effect transistors based on PdSe2/MoS2 heterostructures for photodetectors showing high responsivity and detectivity. Adv. Funct. Mater. 2021, 31, 2106105.

    Article  CAS  Google Scholar 

  13. Pak, S. W.; Chu, D.; Song, D. Y.; Lee, S. K.; Kim, E. K. Enhancement of near-infrared detectability from InGaZnO thin film transistor with MoS2 light absorbing layer. Nanotechnology 2017, 28, 475206.

    Article  Google Scholar 

  14. Chu, D.; Pak, S. W.; Kim, E. K. Locally gated SnS2/hBN thin film transistors with a broadband photoresponse. Sci. Rep. 2018, 8, 10585.

    Article  Google Scholar 

  15. Kong, L. G.; Zhang, X. D.; Tao, Q. Y.; Zhang, M. L.; Dang, W. Q.; Li, Z. W.; Feng, L. P.; Liao, L.; Duan, X. F.; Liu, Y. Doping-free complementary WSe2 circuit via van der Waals metal integration. Nat. Commun. 2020, 11, 1866.

    Article  CAS  Google Scholar 

  16. Chen, J.; Zhu, J. Q.; Wang, Q. Y.; Wan, J.; Liu, R. Homogeneous 2D MoTe2 CMOS inverters and p-n junctions formed by laser-irradiation-induced p-type doping. Small 2020, 16, 2001428.

    Article  CAS  Google Scholar 

  17. Lee, H. S.; Choi, K.; Kim, J. S.; Yu, S.; Ko, K. R.; Im, S. Coupling two-dimensional MoTe2 and InGaZnO thin-film materials for hybrid PN junction and CMOS inverters. ACS Appl. Mater. Interfaces 2017, 9, 15592–15598.

    Article  CAS  Google Scholar 

  18. Gao, L.; Liao, Q. L.; Zhang, X. K.; Liu, X. Z.; Gu, L.; Liu, B. S.; Du, J. L.; Ou, Y.; Xiao, J. K.; Kang, Z. et al. Defect-engineered atomically thin MoS2 homogeneous electronics for logic inverters. Adv. Mater. 2020, 32, 1906646.

    Article  CAS  Google Scholar 

  19. De Fazio, D.; Goykhman, I.; Yoon, D.; Bruna, M.; Eiden, A.; Milana, S.; Sassi, U.; Barbone, M.; Dumcenco, D.; Marinov, K. et al. High responsivity, large-area graphene/MoS2 flebible photodetectors. ACS Nano 2016, 10, 8252–8262.

    Article  CAS  Google Scholar 

  20. Zheng, Z. Q.; Zhang, T. M.; Yao, J.; Zhang, Y.; Xu, J. R.; Yang, G. W. Flexible, transparent and ultra-broadband photodetector based on large-area WSe2 film for wearable devices. Nanotechnology 2016, 27, 225501.

    Article  Google Scholar 

  21. Yoon, J.; Park, W.; Bae, G. Y.; Kim, Y.; Jang, H. S.; Hyun, Y.; Lim, S. K.; Kahng, Y. H.; Hong, W. K.; Lee, B. H. et al. Highly flexible and transparent multilayer MoS2 transistors with graphene electrodes. Small 2013, 9, 3295–3300.

    Article  CAS  Google Scholar 

  22. Wang, Q. S.; Wen, Y.; Cai, K. M.; Cheng, R. Q.; Yin, L.; Zhang, Y.; Li, J.; Wang, Z. X.; Wang, F.; Wang, F. M. et al. Nonvolatile infrared memory in MoS2/PbS van der Waals heterostructures. Sci. Adv. 2018, 4, eaap7916.

  23. Park, S.; Jeong, Y.; Jin, H. J.; Park, J.; Jang, H.; Lee, S.; Huh, W.; Cho, H.; Shin, H. G.; Kim, K. et al. Nonvolatile and neuromorphic memory devices using interfacial traps in two-dimensional WSe2/MoTe2 stack channel. ACS Nano 2020, 14, 12064–12071.

    Article  CAS  Google Scholar 

  24. Feng, X. W.; Li, Y. D.; Wang, L.; Chen, S.; Yu, Z. G.; Tan, W. C.; Macadam, N.; Hu, G. H.; Huang, L.; Chen, L. et al. A fully printed flexible MoS2 memristive artificial synapse with femtojoule switching energy. Adv. Electron. Mater. 2019, 5, 1900740.

    Article  CAS  Google Scholar 

  25. Qiu, D. R.; Lee, D. U.; Lee, K. S.; Pak, S. W.; Kim, E. K. Toward negligible charge loss in charge injection memories based on vertically integrated 2D heterostructures. Nano Res. 2016, 9, 2319–2326.

    Article  CAS  Google Scholar 

  26. Pham, T.; Li, G. H.; Bekyarova, E.; Itkis, M. E.; Mulchandani, A. MoS2-based optoelectronic gas sensor with sub-parts-per-billion limit of NO2 gas detection. ACS Nano 2019, 13, 3196–3205.

    Article  CAS  Google Scholar 

  27. Park, H.; Han, G.; Lee, S. W.; Lee, H.; Jeong, S. H.; Naqi, M.; AlMutairi, A.; Kim, Y. J.; Lee, J.; Kim, W. J. et al. Label-free and recalibrated multilayer MoS2 biosensor for point-of-care diagnostics. ACS Appl. Mater. Interfaces 2017, 9, 43490–43497.

    Article  CAS  Google Scholar 

  28. Wu, Y. C.; Joshi, N.; Zhao, S. L.; Long, H.; Zhou, L. J.; Ma, G.; Peng, B.; Oliveira, O. N. Jr.; Zettl, A.; Lin, L. W. NO2 gas sensors based on CVD tungsten diselenide monolayer. Appl. Surf. Sci. 2020, 529, 147110.

    Article  CAS  Google Scholar 

  29. Singh, S.; Deb, J.; Sarkar, U.; Sharma, S. MoS2/WO3 nanosheets for detection of ammonia. ACS Appl. Nano Mater 2021, 4, 2594–2605.

    Article  CAS  Google Scholar 

  30. Radisavljevic, B.; Whitwick, M. B.; Kis, A. Integrated circuits and logic operations based on single-layer MoS2. ACS Nano 2011, 5, 9934–9938.

    Article  CAS  Google Scholar 

  31. Das, S.; Chen, H. Y.; Penumatcha, A. V.; Appenzeller, J. High performance multilayer MoS2 transistors with scandium contacts. Nano Lett. 2013, 13, 100–105.

    Article  CAS  Google Scholar 

  32. Cho, A. J.; Yang, S.; Park, K.; Namgung, S. D.; Kim, H.; Kwon, J. Y. Multi-layer MoS2 FET with small hysteresis by using atomic layer deposition Al2O3 as gate insulator. ECS Solid State Lett. 2014, 3, Q67–Q69.

    Article  CAS  Google Scholar 

  33. Pan, Y.; Jia, K. P.; Huang, K. L.; Wu, Z. H.; Bai, G. B.; Yu, J. H.; Zhang, Z. H.; Zhang, Q. Z.; Yin, H. X. Near-ideal subthreshold swing MoS2 back-gate transistors with an optimized ultrathin HfO2 dielectric layer. Nanotechnology 2019, 30, 095202.

    Article  CAS  Google Scholar 

  34. Li, T.; Wan, B. S.; Du, G.; Zhang, B. S.; Zeng, Z. M. Electrical performance of multilayer MoS2 transistors on high-K Al2O3 coated Si substrates. AIP Adv. 2015, 5, 057102.

    Article  Google Scholar 

  35. Song, X. J.; Xu, J. P.; Liu, L.; Lai, P. T.; Tang, W. M. Improved interfacial and electrical properties of few-layered MoS2 FETs with plasma-treated Al2O3 as gate dielectric. Appl. Surf. Sci. 2019, 481, 1028–1034.

    Article  CAS  Google Scholar 

  36. Zhuravlev, L. T. The surface chemistry of amorphous silica. Zhuravlev model. Colloids Surf. A: Physicochem. Eng. Asp. 2000, 173, 1–38.

    Article  CAS  Google Scholar 

  37. Guo, Y.; Wei, X. L.; Shu, J. P.; Liu, B.; Yin, J. B.; Guan, C. R.; Han, Y. X.; Gao, S.; Chen, Q. Charge trapping at the MoS2-SiO2 interface and its effects on the characteristics of MoS2 metal-oxide-semiconductor field effect transistors. Appl. Phys. Lett. 2015, 106, 103109.

    Article  Google Scholar 

  38. Lee, H. S.; Baik, S. S.; Lee, K.; Min, S. W.; Jeon, P. J.; Kim, J. S.; Choi, K.; Choi, H. J.; Kim, J. H.; Im, S. Metal semiconductor field-effect transistor with MoS2/conducting NiOx van der Waals Schottky interface for intrinsic high mobility and photoswitching speed. ACS Nano 2015, 9, 8312–8320.

    Article  CAS  Google Scholar 

  39. Guo, J.; Wang, L. Y.; Yu, Y. W.; Wang, P. Q.; Huang, Y.; Duan, X. F. SnSe/MoS2 van der Waals heterostructure junction field-effect transistors with nearly ideal subthreshold slope. Adv. Mater. 2019, 31, 1902962.

    Article  CAS  Google Scholar 

  40. Shin, H. G.; Yoon, H. S.; Kim, J. S.; Kim, M.; Lim, J. Y.; Yu, S.; Park, J. H.; Yi, Y.; Kim, T.; Jun, S. C. et al. Vertical and in-plane current devices using NbS2/n-MoS2 van der Waals Schottky junction and graphene contact. Nano Lett. 2018, 18, 1937–1945.

    Article  CAS  Google Scholar 

  41. Lim, J. Y.; Kim, M.; Jeong, Y.; Ko, K. R.; Yu, S.; Shin, H. G.; Moon, J. Y.; Choi, Y, J.; Yi, Y.; Kim, T. et al. Van der Waals junction field effect transistors with both n- and p-channel transition metal dichalcogenides. npj 2D Mater. Appl. 2018, 2, 37.

    Article  Google Scholar 

  42. Kim, T.; Fan, S. D.; Lee, S.; Joo, M. K.; Lee, Y. H. High-mobility junction field-effect transistor via graphene/MoS2 heterointerface. Sci. Rep. 2020, 10, 13101.

    Article  CAS  Google Scholar 

  43. Li, H.; Zhang, Q.; Yap, C. C. R.; Tay, B. K.; Edwin, T. H. T.; Olivier, A.; Baillargeat, D. From bulk to monolayer MoS2: Evolution of Raman scattering. Adv. Funct. Mater. 2012, 22, 1385–1390.

    Article  CAS  Google Scholar 

  44. Wang, L.; Jie, J. S.; Shao, Z. B.; Zhang, Q.; Zhang, X. H.; Wang, Y. M.; Sun, Z.; Lee, S. T. MoS2/Si heterojunction with vertically standing layered structure for ultrafast, high-detectivity, self-driven visible-near infrared photodetectors. Adv. Funct. Mater. 2015, 25, 2910–2919.

    Article  CAS  Google Scholar 

  45. Nourbakhsh, A.; Zubair, A.; Sajjad, R. N.; Tavakkoli, K. G. A.; Chen, W.; Fang, S.; Ling, X.; Kong, J.; Dresselhaus, M. S.; Kaxiras, E. et al. MoS2 field-effect transistor with sub-10 nm channel length. Nano Lett. 2016, 16, 7798–7806.

    Article  CAS  Google Scholar 

  46. Kim, S.; Konar, A.; Hwang, W. S.; Lee, J. H.; Lee, J.; Yang, J.; Jung, C.; Kim, H.; Yoo, J. B.; Choi, J. Y. et al. High-mobility and low-power thin-film transistors based on multilayer MoS2 crystals. Nat. Commun. 2012, 3, 1011.

    Article  Google Scholar 

  47. Late, D. J.; Liu, B.; Matte, H. S. S. R.; Dravid, V. P.; Rao, C. N. R. Hysteresis in single-layer MoS2 field effect transistors. ACS Nano 2012, 6, 5635–5641.

    Article  CAS  Google Scholar 

  48. Liu, N.; Baek, J.; Kim, S. M.; Hong, S.; Hong, Y. K.; Kim, Y. S.; Kim, H. S.; Kim, S.; Park, J. Improving the stability of high-performance multilayer MoS2 field-effect transistors. ACS Appl. Mater. Interfaces 2017, 9, 42943–42950.

    Article  CAS  Google Scholar 

  49. Lee, C.; Rathi, S.; Khan, M. A.; Lim, D.; Kim, Y.; Yun, S. J.; Youn, D. H.; Watanabe, K.; Taniguchi, T.; Kim, G. H. Comparison of trapped charges and hysteresis behavior in hBN encapsulated single MoS2 flake based field effect transistors on SiO2 and hBN substrates. Nanotechnology 2018, 29, 335202.

    Article  Google Scholar 

  50. Park, Y.; Baac, H. W.; Heo, J.; Yoo, G. Thermally activated trap charges responsible for hysteresis in multilayer MoS2 field-effect transistors. Appl. Phys. Lett. 2016, 108, 083102.

    Article  Google Scholar 

  51. Han, K. H.; Kim, G. S.; Park, J.; Kim, S. G.; Park, J. H.; Yu, H. Y. Reduction of threshold voltage hysteresis of MoS2 transistors with 3-aminopropyltriethoxysilane passivation and its application for improved synaptic behavior. ACS Appl. Mater. Interfaces 2019, 11, 20949–20955.

    Article  CAS  Google Scholar 

  52. Datye, I. M.; Gabourie, A. J.; English, C. D.; Smithe, K. K. H.; McClellan, C. J.; Wang, N. C.; Pop, E. Reduction of hysteresis in MoS2 transistors using pulsed voltage measurements. 2D Mater. 2019, 6, 011004.

    Article  CAS  Google Scholar 

  53. Doherty, J. L.; Noyce, S. G.; Cheng, Z. H.; Abuzaid, H.; Franklin, A. D. Capping layers to improve the electrical stress stability of MoS2 transistors. ACS Appl. Mater. Interfaces 2020, 12, 35698–35706.

    Article  CAS  Google Scholar 

  54. Shen, H.; Bu, S. T.; Huang, D. M. Transient characteristics of back-gated multilayer MoS2 and WSe2 channel n-type metal oxide semiconductor field effect transistors: A comparative study. J. Appl. Phys. 2019, 126, 194501.

    Article  Google Scholar 

Download references

Acknowledgements

This research was supported by the National Research Foundation of Korea (NRF) grant funded by the Korean government (MSIP) (No. NRF-2020R1A4A4078674).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eun Kyu Kim.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, Y., Kim, T. & Kim, E.K. High-performance MoS2/p+-Si heterojunction field-effect transistors by interface modulation. Nano Res. 15, 6500–6506 (2022). https://doi.org/10.1007/s12274-022-4263-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-022-4263-0

Keywords

Navigation