Skip to main content
Log in

Self-supporting nanoporous gold-palladium overlayer bifunctional catalysts toward oxygen reduction and evolution reactions

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

The oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) are crucial processes for energy conversion/storage systems, such as fuel cells, metal–air batteries, and water splitting. However, both reactions are severely restricted by their sluggish kinetics, thus requiring highly active, cost-effective, and durable electrocatalysts. Herein, we develop novel bifunctional nanocatalysts through surface nanoengineering of dealloying-driven nanoporous gold (NPG). Pd overlayers were precisely deposited onto the NPG ligament surface by epitaxial layer-by-layer growth. More importantly, the obtained NPG-Pd overlayer nanocatalysts exhibit remarkably enhanced electrocatalytic activities toward both the ORR and OER in alkaline media, benchmarked against a stateof- the-art Pt/C catalyst. The improved electrocatalytic performance is rationalized by the unique three-dimensional nanoarchitecture of NPG, enhanced Pd utilization efficiency from precise control of the Pd overlayers, and change in electronic structure, as revealed by density functional theory calculations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Greeley, J.; Stephens, I. E. L.; Bondarenko, A. S.; Johansson, T. P.; Hansen, H. A.; Jaramillo, T. F.; Rossmeisl, J.; Chorkendorff, I.; Nørskov, J. K. Alloys of platinum and early transition metals as oxygen reduction electrocatalysts. Nat. Chem. 2009, 1, 552–556.

    Article  Google Scholar 

  2. Suntivich, J.; Gasteiger, H. A.; Yabuuchi, N.; Nakanishi, H.; Goodenough, J. B.; Shao-Horn, Y. Design principles for oxygen-reduction activity on perovskite oxide catalysts for fuel cells and metal–air batteries. Nat. Chem. 2011, 3, 546–550.

    Article  Google Scholar 

  3. Peng, Z. Q.; Freunberger, S. A.; Chen, Y. H.; Bruce, P. G. A reversible and higher-rate Li-O2 battery. Science 2012, 337, 563–566.

    Article  Google Scholar 

  4. Cui, C. H.; Gan, L.; Heggen, M.; Rudi, S.; Strasser, P. Compositional segregation in shaped Pt alloy nanoparticles and their structural behaviour during electrocatalysis. Nat. Mater. 2013, 12, 765–771.

    Article  Google Scholar 

  5. Chen, C.; Kang, Y. J.; Huo, Z. Y.; Zhu, Z. W.; Huang, W. Y.; Xin, H. L.; Snyder, J. D.; Li, D. G.; Herron, J. A.; Mavrikakis, M. et al. Highly crystalline multimetallic nanoframes with three-dimensional electrocatalytic surfaces. Science 2014, 343, 1339–1343.

    Article  Google Scholar 

  6. Zhang, L.; Roling, L. T.; Wang, X.; Vara, M.; Chi, M. F.; Liu, J. Y.; Choi, S. I.; Park, J.; Herron, J. A.; Xie, Z. X. et al. Platinum-based nanocages with subnanometer-thick walls and well-defined, controllable facets. Science 2015, 349, 412–416.

    Article  Google Scholar 

  7. Huang, X. Q.; Zhao, Z. P.; Cao, L.; Chen, Y.; Zhu, E. B.; Lin, Z. Y.; Li, M. F.; Yan, A. M.; Zettl, A.; Wang, Y. M. et al. High-performance transition metal-doped Pt3Ni octahedra for oxygen reduction reaction. Science 2015, 348, 1230–1234.

    Article  Google Scholar 

  8. Kanan, M. W.; Nocera, D. G. In situ formation of an oxygenevolving catalyst in neutral water containing phosphate and Co2+. Science 2008, 321, 1072–1075.

    Article  Google Scholar 

  9. Yin, Q. S.; Tan, J. M.; Besson, C.; Geletii, Y. V.; Musaev, D. G.; Kuznetsov, A. E.; Luo, Z.; Hardcastle, K. I.; Hill, C. L. A fast soluble carbon-free molecular water oxidation catalyst based on abundant metals. Science 2010, 328, 342–345.

    Article  Google Scholar 

  10. Esswein, A. J.; Surendranath, Y.; Reece, S. Y.; Nocera, D. G. Highly active cobalt phosphate and borate based oxygen evolving catalysts operating in neutral and natural waters. Energy Environ. Sci. 2011, 4, 499–504.

    Article  Google Scholar 

  11. Suntivich, J.; May, K. J.; Gasteiger, H. A.; Goodenough, J. B.; Shao-Horn, Y. A perovskite oxide optimized for oxygen evolution catalysis from molecular orbital principles. Science 2011, 334, 1383–1385.

    Article  Google Scholar 

  12. McCrory, C. C. L.; Jung, S.; Peters, J. C.; Jaramillo, T. F. Benchmarking heterogeneous electrocatalysts for the oxygen evolution reaction. J. Am. Chem. Soc. 2013, 135, 16977–16987.

  13. Luo, J. S.; Im, J.-H.; Mayer, M. T.; Schreier, M.; Nazeeruddin, M. K.; Park, N.-G.; Tilley, S. D.; Fan, H. J.; Grätzel, M. Water photolysis at 12.3% efficiency via perovskite photovoltaics and Earth-abundant catalysts. Science 2014, 345, 1593–1596.

    Article  Google Scholar 

  14. Wu, J. B.; Zhang, J. L.; Peng, Z. M.; Yang, S. C.; Wagner, F. T.; Yang, H. Truncated octahedral Pt3Ni oxygen reduction reaction electrocatalysts. J. Am. Chem. Soc. 2010, 132, 4984–4985.

    Article  Google Scholar 

  15. Calle-Vallejo, F.; Koper, M. T. M.; Bandarenka, A. S. Tailoring the catalytic activity of electrodes with monolayer amounts of foreign metals. Chem. Soc. Rev. 2013, 42, 5210–5230.

    Article  Google Scholar 

  16. Shao, M.; Shoemaker, K.; Peles, A.; Kaneko, K.; Protsailo, L. Pt monolayer on porous Pd-Cu alloys as oxygen reduction electrocatalysts. J. Am. Chem. Soc. 2010, 132, 9253–9255.

    Article  Google Scholar 

  17. Wang, R. Y.; Wang, C.; Cai, W. B.; Ding, Y. Ultralowplatinum- loading high-performance nanoporous electrocatalysts with nanoengineered surface structures. Adv. Mater. 2010, 22, 1845–1848.

    Article  Google Scholar 

  18. Nørskov, J. K.; Bligaard, T.; Rossmeisl, J.; Christensen, C. H. Towards the computational design of solid catalysts. Nat. Chem. 2009, 1, 37–46.

    Article  Google Scholar 

  19. Lang, X. Y.; Hirata, A.; Fujita, T.; Chen, M. W. Nanoporous metal/oxide hybrid electrodes for electrochemical supercapacitors. Nat. Nanotechnol. 2011, 6, 232–236.

    Article  Google Scholar 

  20. Meng, F. H.; Ding, Y. Sub-micrometer-thick all-solid-state supercapacitors with high power and energy densities. Adv. Mater. 2011, 23, 4098–4102.

    Article  Google Scholar 

  21. Yu, Y.; Gu, L.; Lang, X. Y.; Zhu, C. B.; Fujita, T.; Chen, M. W.; Maier, J. Li storage in 3D nanoporous Au-supported nanocrystalline tin. Adv. Mater. 2011, 23, 2443–2447.

    Article  Google Scholar 

  22. Liu, P.; Ge, X.; Wang, R.; Ma, H.; Ding, Y. Facile fabrication of ultrathin Pt overlayers onto nanoporous metal membranes via repeated Cu UPD and in situ redox replacement reaction. Langmuir 2009, 25, 561–567.

    Article  Google Scholar 

  23. Brankovic, S. R.; Wang, J. X.; Adžic, R. R. Metal monolayer deposition by replacement of metal adlayers on electrode surfaces. Surf. Sci. 2001, 474, L173–L179.

    Article  Google Scholar 

  24. Henning, S.; Herranz, J.; Gasteiger, H. A. Bulk-palladium and palladium-on-gold electrocatalysts for the oxidation of hydrogen in alkaline electrolyte. J. Electrochem. Soc. 2015, 162, F178–F189.

    Article  Google Scholar 

  25. Yan, X. J.; Xiong, H. Y.; Bai, Q. G.; Frenzel, J.; Si, C. H.; Chen, X. T.; Eggeler, G.; Zhang, Z. H. Atomic layer-bylayer construction of Pd on nanoporous gold via underpotential deposition and displacement reaction. RSC Adv. 2015, 5, 19409–19417.

    Article  Google Scholar 

  26. Gokcen, D.; Bae, S.-E.; Brankovic, S. R. Stoichiometry of Pt submonolayer deposition via surface-limited redox replacement reaction. J. Electrochem. Soc. 2010, 157, D582–D587.

    Article  Google Scholar 

  27. Fujita, T.; Guan, P. F.; McKenna, K.; Lang, X. Y.; Hirata, A.; Zhang, L.; Tokunaga, T.; Arai, S.; Yamamoto, Y.; Tanaka, N. et al. Atomic origins of the high catalytic activity of nanoporous gold. Nat. Mater. 2012, 11, 775–780.

    Article  Google Scholar 

  28. Xu, C. X.; Su, J. X.; Xu, X. H.; Liu, P. P.; Zhao, H. J.; Tian, F.; Ding, Y. Low temperature CO oxidation over unsupported nanoporous gold. J. Am. Chem. Soc. 2007, 129, 42–43.

    Article  Google Scholar 

  29. Zhang, J. T.; Liu, P. P.; Ma, H. Y.; Ding, Y. Nanostructured porous gold for methanol electro-oxidation. J. Phys. Chem. C 2007, 111, 10382–10388.

    Article  Google Scholar 

  30. Fujita, T.; Qian, L.-H.; Inoke, K.; Erlebacher, J.; Chen, M.-W. Three-dimensional morphology of nanoporous gold. Appl. Phys. Lett. 2008, 92, 251902.

    Article  Google Scholar 

  31. Grden, M.; Lukaszewski, M.; Jerkiewicz, G.; Czerwinski, A. Electrochemical behaviour of palladium electrode: Oxidation, electrodissolution and ionic adsorption. Electrochim. Acta 2008, 53, 7583–7598.

    Article  Google Scholar 

  32. Stephens, I. E. L.; Bondarenko, A. S.; Grønbjerg, U.; Rossmeisl, J.; Chorkendorff, I. Understanding the electrocatalysis of oxygen reduction on platinum and its alloys. Energy Environ. Sci. 2012, 5, 6744–6762.

    Article  Google Scholar 

  33. Wang, R. Y.; Liu, J. G.; Liu, P.; Bi, X. X.; Yan, X. L.; Wang, W. X.; Meng, Y. F.; Ge, X. B.; Chen, M. W.; Ding, Y. Ultra-thin layer structured anodes for highly durable low-Pt direct formic acid fuel cells. Nano Res. 2014, 7, 1569–1580.

    Article  Google Scholar 

  34. Wang, C.; Waje, M.; Wang, X.; Tang, J. M.; Haddon, R. C.; Yan, Y. S. Proton exchange membrane fuel cells with carbon nanotube based electrodes. Nano Lett. 2004, 4, 345–348.

    Article  Google Scholar 

  35. Bandarenka, A. S.; Varela, A. S.; Karamad, M.; Calle-Vallejo, F.; Bech, L.; Perez-Alonso, F. J.; Rossmeisl, J.; Stephens, I. E.; Chorkendorff, I. Design of an active site towards optimal electrocatalysis: Overlayers, surface alloys and near-surface alloys of Cu/Pt(111). Angew. Chem., Int. Ed. 2012, 51, 11845–11848.

    Article  Google Scholar 

  36. Stamenkovic, V.; Mun, B. S.; Mayrhofer, K. J. J.; Ross, P. N.; Markovic, N. M.; Rossmeisl, J.; Greeley, J.; Nørskov, J. K. Changing the activity of electrocatalysts for oxygen reduction by tuning the surface electronic structure. Angew. Chem. 2006, 118, 2963–2967.

    Article  Google Scholar 

  37. Hammer, B.; Nørskov, J. K. Theoretical surface science and catalysis—Calculations and concepts. Adv. Catal. 2000, 45, 71–129.

    Google Scholar 

  38. Mavrikakis, M.; Hammer, B.; Nørskov, J. K. Effect of strain on the reactivity of metal surfaces. Phys. Rev. Lett. 1998, 81, 2819.

    Article  Google Scholar 

  39. Kitchin, J. R.; Nørskov, J. K.; Barteau, M. A.; Chen, J. G. Modification of the surface electronic and chemical properties of Pt(111) by subsurface 3d transition metals. J. Chem. Phys. 2004, 120, 10240–10246.

    Article  Google Scholar 

  40. Kitchin, J. R.; Nørskov, J. K.; Barteau, M. A.; Chen, J. G. Role of strain and ligand effects in the modification of the electronic and chemical properties of bimetallic surfaces. Phys. Rev. Lett. 2004, 93, 156801.

    Article  Google Scholar 

  41. Strasser, P.; Koh, S.; Anniyev, T.; Greeley, J.; More, K.; Yu, C. F.; Liu, Z. C.; Kaya, S.; Nordlund, D.; Ogasawara, H. et al. Lattice-strain control of the activity in dealloyed core–shell fuel cell catalysts. Nat. Chem. 2010, 2, 454–460.

    Article  Google Scholar 

  42. Sun, J. Z.; Shi, J.; Xu, J. L.; Chen, X. T.; Zhang, Z. H.; Peng, Z. Q. Enhanced methanol electro-oxidation and oxygen reduction reaction performance of ultrafine nanoporous platinum–copper alloy: Experiment and density functional theory calculation. J. Power Sources 2015, 279, 334–344.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhonghua Zhang.

Additional information

These authors contributed equally to this work.

Electronic supplementary material

12274_2016_1248_MOESM1_ESM.pdf

Self-supporting nanoporous gold-palladium overlayer bifunctional catalysts toward oxygen reduction and evolution reactions

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Y., Huang, W., Si, C. et al. Self-supporting nanoporous gold-palladium overlayer bifunctional catalysts toward oxygen reduction and evolution reactions. Nano Res. 9, 3781–3794 (2016). https://doi.org/10.1007/s12274-016-1248-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-016-1248-x

Keywords

Navigation