Skip to main content
Log in

A hybrid carbon aerogel with both aligned and interconnected pores as interlayer for high-performance lithium–sulfur batteries

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

The soluble nature of polysulfide species created on the sulfur electrode has severely hampered the electrochemical performance of lithium–sulfur (Li–S) batteries. Trapping and anchoring polysulfides are promising approaches for overcoming this issue. In this work, a mechanically robust, electrically conductive hybrid carbon aerogel (HCA) with aligned and interconnected pores was created and investigated as an interlayer for Li–S batteries. The hierarchical cross-linked networks constructed by graphene sheets and carbon nanotubes can act as an “internet” to capture the polysulfide, while the microand nano-pores inside the aerogel can facilitate quick penetration of the electrolyte and rapid transport of lithium ions. As advantages of the unique structure and excellent accommodation of the volume change of the active materials, a high specific capacity of 1,309 mAh·g−1 at 0.2 C was achieved for the assembled Li–S battery, coupled with good rate performance and long-term cycling stability (78% capacity retention after 600 cycles at 4 C).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Su, Y. S.; Fu, Y. Z.; Cochell, T.; Manthiram, A. A strategic approach to recharging lithium-sulphur batteries for long cycle life. Nat. Commun. 2013, 4, 2985.

    Google Scholar 

  2. Zhao, M. Q.; Zhang, Q.; Huang, J. Q.; Tian, G. L.; Nie, J. Q.; Peng, H. J.; Wei, F. Unstacked double-layer templated graphene for high-rate lithium–sulphur batteries. Nat. Commun. 2014, 5, 3410.

    Google Scholar 

  3. Yang, Z. B.; Sun, H.; Chen, T.; Qiu, L. B.; Luo, Y. F.; Peng, H. S. Photovoltaic wire derived from a graphene composite fiber achieving an 8.45% energy conversion efficiency. Angew. Chem., Int. Ed. 2013, 52, 7545–7548.

    Article  Google Scholar 

  4. Jung, D. S.; Hwang, T. H.; Lee, J. H.; Koo, H. Y.; Shakoor, R. A.; Kahraman, R.; Jo, Y. N.; Park, M. S.; Choi, J. W. Hierarchical porous carbon by ultrasonic spray pyrolysis yields stable cycling in lithium–sulfur battery. Nano Lett. 2014, 14, 4418–4425.

    Article  Google Scholar 

  5. Fu, Y. Z.; Su, Y. S.; Manthiram, A. Highly reversible lithium/dissolved polysulfide batteries with carbon nanotube electrodes. Angew.Chem.,Int. Ed. 2013, 52, 6930–6935.

    Article  Google Scholar 

  6. Zhang, B.; Qin, X.; Li, G. R.; Gao, X. P. Enhancement of long stability of sulfur cathode by encapsulating sulfur into micropores of carbon spheres. Energy Environ. Sci. 2010, 3, 1531–1537.

    Article  Google Scholar 

  7. Li, W. Y.; Yao, H. B.; Yan, K.; Zheng, G. Y.; Liang, Z.; Chiang, Y. M.; Cui, Y. The synergetic effect of lithium polysulfide and lithium nitrate to prevent lithium dendrite growth. Nat. Commun. 2015, 6, 7436.

    Article  Google Scholar 

  8. Yin, Y. X.; Xin, S.; Guo, Y. G.; Wan, L. J. Lithium-sulfur batteries:Electrochemistry, materials, and prospects. Angew. Chem., Int. Ed. 2013, 52, 13186–13200.

    Article  Google Scholar 

  9. Yao, H. B.; Zheng, G. Y.; Hsu, P. C.; Kong, D. S.; Cha, J. J.; Li, W. Y.; Seh, Z. W.; McDowell, M. T.; Yan, K.; Liang, Z.et al. Improving lithium–sulphur batteries through spatial control of sulphur species deposition on a hybrid electrode surface. Nat. Commun. 2014, 5, 3943.

    Google Scholar 

  10. Zhang, Z.; Jing, H. K.; Liu, S.; Li, G. R.; Gao, X. P. Encapsulating sulfur into a hybrid porous carbon/CNT substrate as a cathode for lithium–sulfur batteries. J. Mater. Chem. A 2015, 3, 6827–6834.

    Article  Google Scholar 

  11. Li, G. C.; Li, G. R.; Ye, S. H.; Gao, X. P. A polyanilinecoated sulfur/carbon composite with an enhanced high-rate capability as a cathode material for lithium/sulfur batteries. Adv. Energy Mater. 2012, 2, 1238–1245.

    Article  Google Scholar 

  12. Xiao, Z. B.; Yang, Z.; Wang, L.; Nie, H. G.; Zhong, M. E.; Lai, Q. Q.; Xu, X. J.; Zhang, L. J.; Huang, S. M. A lightweight TiO/graphene interlayer, applied as a highly effective polysulfide absorbent for fast, long-life lithium–sulfur batteries. Adv. Mater. 2015, 27, 2891–2898.

    Google Scholar 

  13. Chung, S. H.; Manthiram, A. A hierarchical carbonized paper with controllable thickness as a modulable interlayer system for high performance Li–S batteries. Chem. Commun. 2014, 50, 4184–4187.

    Article  Google Scholar 

  14. Yan, J. H.; Li, B. Y.; Liu, X. B. Nano-porous sulfurpolyaniline electrodes for lithium-sulfurbatteries. Nano Energy 2015, 18, 245–252.

    Article  Google Scholar 

  15. Yan, J. H.; Liu, X. B.; Yao, M.; Wang, X. F.; Wafle, T. K.; Li, B. Y. Long-life, high-efficiency lithium-sulfur battery from a nanoassembled cathode. Chem. Mater. 2015, 27, 5080–5087.

    Article  Google Scholar 

  16. Yan, J. H.; Liu, X. B.; Qi, H.; Li, W. Y.; Zhou, Y.; Yao, M.; Li, B. Y. High-performance lithium-sulfur batteries with a cost-effective carbon paper electrode and high sulfur-loading. Chem. Mater. 2015, 27, 6394–6401.

    Article  Google Scholar 

  17. Huang, Y.; Zheng, M. B.; Lin, Z. X.; Zhao, B.; Zhang, S. T.; Yang, J. Z.; Zhu, C. L.; Zhang, H.; Sun, D. P.; Shi, Y. Flexible cathodes and multifunctional interlayers based on carbonized bacterial cellulose for high-performance lithium–sulfur batteries. J. Mater. Chem. A 2015, 3, 10910–10918.

    Article  Google Scholar 

  18. Zhou, G. M.; Pei, S. F.; Li, L.; Wang, D. W.; Wang, S. G.; Huang, K.; Yin, L. C.; Li, F.; Cheng, H. M. A graphenepure- sulfur sandwich structure for ultrafast, long-life lithiumsulfur batteries. Adv. Mater. 2014, 26, 625–631.

    Google Scholar 

  19. Balach, J.; Jaumann, T.; Klose, M.; Oswald, S.; Eckert, J.; Giebeler, L. Mesoporouscarbon interlayers with tailored pore volume as polysulfide reservoir for high-energy lithium–sulfur batteries. J. Phys. Chem. C 2015, 119, 4580–4587.

    Article  Google Scholar 

  20. Yan, J. H.; Liu, X. B.; Wang, X. F.; Li, B. Y. Long-life, high-efficiency lithium/sulfur batteries from sulfurized carbon nanotube cathodes. J. Mater. Chem. A 2015, 3, 10127–10133.

    Article  Google Scholar 

  21. Singhal, R.; Chung, S. H.; Manthiram, A.; Kalra, V. A free-standing carbon nanofiber interlayer for high-performance lithium–sulfur batteries. J. Mater. Chem. A 2015, 3, 4530–4538.

    Article  Google Scholar 

  22. Song, J. X.; Yu, Z. X.; Xu, T.; Chen, S. R.; Sohn, H. S.; Regula, M.; Wang, D. H. Flexible freestanding sandwichstructured sulfur cathode with superior performance for lithium–sulfur batteries. J. Mater. Chem. A 2014, 2, 8623–8627.

    Article  Google Scholar 

  23. Su, Y. S.; Manthiram, A. A new approach to improve cycle performance of rechargeable lithium–sulfur batteries by inserting a free-standing MWCNT interlayer. Chem. Commun. 2012, 48, 8817–8819.

    Article  Google Scholar 

  24. Lee, C. L.; Kim, I. D. A hierarchical carbon nanotubeloaded glass-filter composite paper interlayer with outstanding electrolyte uptake properties for high-performance lithium–sulphur batteries. Nanoscale 2015, 7, 10362–10367.

    Article  Google Scholar 

  25. Gu, X. X.; Lai, C.; Liu, F.; Yang, W. L.; Hou, Y. L.; Zhang, S. Q. A conductive interwoven bamboo carbon fiber membrane for Li–S batteries. J. Mater. Chem. A 2015, 3, 9502–9509.

    Article  Google Scholar 

  26. Wang, B.; Wen, Y. F.; Ye, D. L.; Yu, H.; Sun, B.; Wang, G. X.; Hulicova-Jurcakova, D.; Wang, L. Z. Dual protection of sulfur by carbon nanospheres and graphene sheets for lithiumsulfur batteries. Chem.—Eur. J. 2014, 20, 5224–5230.

    Article  Google Scholar 

  27. Chung, S. H.; Manthiram, A. Bifunctionalseparator with a light-weight carbon-coating for dynamically and statically stable lithium-sulfur batteries. Adv. Funct. Mater. 2014, 24, 5299–5306.

    Article  Google Scholar 

  28. Sun, H. Y.; Xu, Z.; Gao, C. Multifunctional, ultra-flyweight, synergistically assembled carbon aerogels. Adv. Mater. 2013, 25, 2554–2560.

    Article  Google Scholar 

  29. Xu, Z.; Liu, Z.; Sun, H. Y.; Gao, C. Highly electrically conductive Ag-doped graphene fibers as stretchable conductors. Adv. Mater. 2013, 25, 3249–3253.

    Article  Google Scholar 

  30. Xu, Z.; Zhang, Y.; Li, P. G.; Gao, C. Strong, conductive, lightweight, neat graphene aerogel fibers with aligned pores. ACS Nano 2012, 6, 7103–7113.

    Article  Google Scholar 

  31. Bae, S.; Kim, H.; Lee, Y. B.; Xu, X. F.; Park, J. S.; Zheng, Y.; Balakrishnan, J.; Lei, T.; Ri Kim, H.; Song, Y. I. et al. Roll-to-roll production of 30-inch graphene films for transparent electrodes. Nat. Nanotechnol. 2010, 5, 574–578.

    Article  Google Scholar 

  32. Lee, J. Y.; Connor, S. T.; Cui, Y.; Peumans, P. Solutionprocessed metal nanowire mesh transparent electrodes. Nano Lett. 2008, 8, 689–692.

    Article  Google Scholar 

  33. Mi, X.; Huang, G. B.; Xie, W. S.; Wang, W.; Liu, Y.; Gao, J. P. Preparation of graphene oxide aerogel and its adsorption for Cu2+ ions. Carbon 2012, 50, 4856–4864.

    Article  Google Scholar 

  34. Li, D.; Han, F.; Wang, S.; Cheng, F.; Sun, Q.; Li, W. C. High sulfur loading cathodes fabricated using peapodlike, large pore volume mesoporous carbon for lithium–sulfur battery. ACS Appl. Mater. Interfaces 2013, 5, 2208–2213.

    Article  Google Scholar 

  35. Fang, X.; Weng, W.; Ren, J.; Peng, H. S. A cable-shaped lithium sulfur battery. Adv. Mater. 2016, 28, 491–496.

    Article  Google Scholar 

  36. Gu, X. X.; Wang, Y. Z.; Lai, C.; Qiu, J. X.; Li, S.; Hou, Y. O.; Martens, W.; Mahmood, N.; Zhang, S. Q. Microporous bamboo biochar for lithium-sulfur batteries. Nano Res. 2015, 8, 129–139.

    Article  Google Scholar 

  37. Wang, W. G.; Wang, X.; Tian, L. Y.; Wang, Y. L.; Ye, S. H. In situ sulfur deposition route to obtain sulfur–carbon composite cathodes for lithium–sulfur batteries. J. Mater. Chem. A 2014, 2, 4316–4323.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Huisheng Peng or Tianxi Liu.

Electronic supplementary material

12274_2016_1244_MOESM1_ESM.pdf

A hybrid carbon aerogel with both aligned and interconnected pores as interlayer for high-performance lithium–sulfur batteries

Supplementary material, approximately 48.5 KB.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, M., Yang, Z., Sun, H. et al. A hybrid carbon aerogel with both aligned and interconnected pores as interlayer for high-performance lithium–sulfur batteries. Nano Res. 9, 3735–3746 (2016). https://doi.org/10.1007/s12274-016-1244-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-016-1244-1

Keywords

Navigation