Skip to main content

Advertisement

Log in

Graphene/carbon aerogel for high areal capacity sulfur cathode of Li-S batteries

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

Lithium-sulfur batteries are promising high-energy-density devices for next-generation energy storage systems. One of the most challenging issues impeding their practical application is how to develop cost-effective thick sulfur cathode with fast kinetics. Carbon aerogels (CAs) show great potential as host for lithium-sulfur batteries, while the preparation of CAs usually requires special time-consuming drying techniques to retain their porous structure. In this work, we develop a facile method to tailor the flexible structure of the CAs by simply using NaCl, leading to a more stable porous structure that resists the collapse of pores during conventional drying process. High gravimetric and areal sulfur loading can be realized in the synthesized hierarchically porous carbon aerogel electrode. With 69 wt% and over 6 mg cm−2 sulfur loading on the cathode, the cell delivers an initial capacity of 1121 mA h g−1 and a reversible capacity of 797 mA h g−1 after 100 cycles under the current density of 0.2 C.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Bruce PG, Freunberger SA, Hardwick LJ, Tarascon JM (2012) Li-O2 and Li-S batteries with high energy storage. Nat Mater 11:19–29

    PubMed  Google Scholar 

  2. Ji X, Lee KT, Nazar LF (2009) A highly ordered nanostructured carbon–Sulphur cathode for lithium–Sulphur batteries. Nat Mater 8:500–506

    CAS  PubMed  Google Scholar 

  3. Pang Q, Liang X, Kwok CY, Nazar LF (2016) Advances in lithium–sulfur batteries based on multifunctional cathodes and electrolytes. Nat Energy 1:16132

    CAS  Google Scholar 

  4. Wild M, O'neill L, Zhang T, Purkayastha R, Minton G, Marinescu M, Offer GJ (2015) Lithium sulfur batteries, a mechanistic review. Energy Environ Sci 8:3477–3494

    CAS  Google Scholar 

  5. Zhang SS (2013) Liquid electrolyte lithium/sulfur battery: fundamental chemistry, problems, and solutions. J Power Sources 231:153–162

    CAS  Google Scholar 

  6. Xiong S, Xie K, Diao Y, Hong X (2012) Properties of surface film on lithium anode with LiNO3 as lithium salt in electrolyte solution for lithium–sulfur batteries. Electrochim Acta 83:78–86

    CAS  Google Scholar 

  7. Zhang SS (2012) Role of LiNO3 in rechargeable lithium/sulfur battery. Electrochim Acta 70:344–348

    CAS  Google Scholar 

  8. Liang X, Wen Z, Liu Y, Wu M, Jin J, Zhang H, Wu X (2011) Improved cycling performances of lithium sulfur batteries with LiNO3-modified electrolyte. J Power Sources 196:9839–9843

    CAS  Google Scholar 

  9. Huang J-Q, Liu X-F, Zhang Q, Chen C-M, Zhao M-Q, Zhang S-M, Zhu W, Qian W-Z, Wei F (2013) Entrapment of sulfur in hierarchical porous graphene for lithium–sulfur batteries with high rate performance from −40 to 60 °C. Nano Energy 2:314–321

    CAS  Google Scholar 

  10. Guo J, Xu Y, Wang C (2011) Sulfur-impregnated disordered carbon nanotubes cathode for lithium-sulfur batteries. Nano Lett 11:4288–4294

    CAS  Google Scholar 

  11. Zheng G, Yang Y, Cha JJ, Hong SS, Cui Y (2011) Hollow carbon nanofiber-encapsulated sulfur cathodes for high specific capacity rechargeable lithium batteries. Nano Lett 11:4462–4467

    CAS  PubMed  Google Scholar 

  12. He G, Evers S, Liang X, Cuisinier M, Garsuch A, Nazar LF (2013) Tailoring porosity in carbon Nanospheres for Lithium–sulfur battery cathodes. ACS Nano 7:10920–10930

    CAS  PubMed  Google Scholar 

  13. Jayaprakash N, Shen J, Moganty SS, Corona A, Archer LA (2011) Porous hollow carbon@sulfur composites for high-power lithium-sulfur batteries. Angew Chem Int Ed Eng 50:5904–5908

    CAS  Google Scholar 

  14. Zhang C, Wu HB, Yuan C, Guo Z, Lou XW (2012) Confining sulfur in double-shelled hollow carbon spheres for Lithium–sulfur batteries. Angew Chem Int Ed 51:9592–9595

    CAS  Google Scholar 

  15. Li J, Qin F, Zhang L, Zhang K, Li Q, Lai Y, Zhang Z, Fang J (2014) Mesoporous carbon from biomass: one-pot synthesis and application for Li–S batteries. J Mater Chem A 2:13916–13922

    CAS  Google Scholar 

  16. Wei Seh Z, Li W, Cha JJ, Zheng G, Yang Y, Mcdowell MT, Hsu PC, Cui Y (2013) Sulphur-TiO2 yolk-shell nanoarchitecture with internal void space for long-cycle lithium-Sulphur batteries. Nat Commun 4:1331

  17. Li Z, Zhang J, Lou XW (2015) Hollow carbon nanofibers filled with MnO2 Nanosheets as efficient sulfur hosts for Lithium-sulfur batteries. Angew Chem Int Ed Eng 54:12886–12890

    CAS  PubMed  Google Scholar 

  18. Liang X, Nazar LF (2016) In situ reactive assembly of scalable Core-Shell sulfur-MnO2 composite cathodes. ACS Nano 10:4192–4198

    CAS  PubMed  Google Scholar 

  19. Xiao L, Cao Y, Xiao J, Schwenzer B, Engelhard MH, Saraf LV, Nie Z, Exarhos GJ, Liu J (2012) A soft approach to encapsulate sulfur: polyaniline nanotubes for lithium-sulfur batteries with long cycle life. Adv Mater 24:1176–1181

    CAS  PubMed  Google Scholar 

  20. Zhou W, Yu Y, Chen H, Disalvo FJ, Abruna HD (2013) Yolk-shell structure of polyaniline-coated sulfur for lithium-sulfur batteries. J Am Chem Soc 135:16736–16743

    CAS  PubMed  Google Scholar 

  21. Ma GQ, Wen ZY, Jin J, Lu Y, Wu XW, Wu MF, Chen CH (2014) Hollow polyaniline sphere@sulfur composites for prolonged cycling stability of lithium-sulfur batteries. J Mater Chem A 2:10350–10354

    CAS  Google Scholar 

  22. Song H, Pan Y, Tang A, Xu G, Liu L, Chen H (2019) Polypyrrole-coated loose network mesoporous carbon/sulfur composite for high-performance lithium-sulfur batteries. Ionics. https://doi.org/10.1007/s11581-019-02866-0

    CAS  Google Scholar 

  23. Lv D, Zheng J, Li Q, Xie X, Ferrara S, Nie Z, Mehdi LB, Browning ND, Zhang J-G, Graff GL, Liu J, Xiao J (2015) High energy density Lithium-sulfur batteries: challenges of thick sulfur cathodes. Adv Energy Mater 5:1402290

    Google Scholar 

  24. Ma Y, Zhang H, Wu B, Wang M, Li X, Zhang H (2015) Lithium sulfur primary battery with super high energy density: based on the cauliflower-like structured C/S cathode. Sci Rep 5:14949

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Qie L, Manthiram A (2015) A facile layer-by-layer approach for high-areal-capacity sulfur cathodes. Adv Mater 27:1694–1700

    CAS  PubMed  Google Scholar 

  26. Yuan Z, Peng H-J, Huang J-Q, Liu X-Y, Wang D-W, Cheng X-B, Zhang Q (2014) Hierarchical free-standing carbon-nanotube paper electrodes with ultrahigh sulfur-loading for Lithium-sulfur batteries. Adv Funct Mater 24:6105–6112

    CAS  Google Scholar 

  27. Zhou G, Li L, Ma C, Wang S, Shi Y, Koratkar N, Ren W, Li F, Cheng H-M (2015) A graphene foam electrode with high sulfur loading for flexible and high energy Li-S batteries. Nano Energy 11:356–365

    CAS  Google Scholar 

  28. Fang R, Zhao S, Pei S, Qian X, Hou PX, Cheng HM, Liu C, Li F (2016) Toward more reliable Lithium-sulfur batteries: an all-graphene cathode structure. ACS Nano 10:8676–8682

    CAS  PubMed  Google Scholar 

  29. Lu S, Chen Y, Wu X, Wang Z, Li Y (2014) Three-dimensional sulfur/graphene multifunctional hybrid sponges for lithium-sulfur batteries with large areal mass loading. Sci Rep 4:4629

    PubMed  PubMed Central  Google Scholar 

  30. Li M, Carter R, Douglas A, Oakes L, Pint CL (2017) Sulfur vapor-infiltrated 3D carbon nanotube foam for binder-free high areal capacity Lithium-sulfur battery composite cathodes. ACS Nano 11:4877–4884

    CAS  PubMed  Google Scholar 

  31. Dong S, Huang G, Su M, Huang T (2015) Environmentally friendly method: development and application to carbon aerogel as sorbent for solid-phase extraction. ACS Appl Mater Interfaces 7:22256–22263

    CAS  PubMed  Google Scholar 

  32. Li Y-Q, Samad YA, Polychronopoulou K, Alhassan SM, Liao K (2014) Carbon aerogel from winter melon for highly efficient and recyclable oils and organic solvents absorption. ACS Sustain Chem Eng 2:1492–1497

    CAS  Google Scholar 

  33. Rajkumar C, Veerakumar P, Chen SM, Thirumalraj B, Liu SB (2017) Facile and novel synthesis of palladium nanoparticles supported on a carbon aerogel for ultrasensitive electrochemical sensing of biomolecules. Nanoscale 9:6486–6496

    CAS  PubMed  Google Scholar 

  34. Kolla P, Lai C, Mishra S, Fong H, Rhine W, Smirnova A (2014) CVD grown CNTs within iron modified and graphitized carbon aerogel as durable oxygen reduction catalysts in acidic medium. Carbon 79:518–528

    CAS  Google Scholar 

  35. Zhang X, Tian Z, Shen PK (2013) Composite of nanosized carbides and carbon aerogel and its supported Pd electrocatalyst for synergistic oxidation of ethylene glycol. Electrochem Commun 28:9–12

    CAS  Google Scholar 

  36. Zhang Y, Zuo L, Huang Y, Zhang L, Lai F, Fan W, Liu T (2015) In-situ growth of few-layered MoS2 Nanosheets on highly porous carbon aerogel as advanced Electrocatalysts for hydrogen evolution reaction. ACS Sustain Chem Eng 3:3140–3148

    CAS  Google Scholar 

  37. Hao P, Zhao Z, Tian J, Li H, Sang Y, Yu G, Cai H, Liu H, Wong CP, Umar A (2014) Hierarchical porous carbon aerogel derived from bagasse for high performance supercapacitor electrode. Nanoscale 6:12120–12129

    CAS  PubMed  Google Scholar 

  38. Wang Y-H, Wang C-C, Cheng W-Y, Lu S-Y (2014) Dispersing WO3 in carbon aerogel makes an outstanding supercapacitor electrode material. Carbon 69:287–293

    CAS  Google Scholar 

  39. Yin L, Zhang Z, Li Z, Hao F, Li Q, Wang C, Fan R, Qi Y (2014) Spinel ZnMn2O4 nanocrystal-anchored 3D hierarchical carbon aerogel hybrids as anode materials for Lithium ion batteries. Adv Funct Mater 24:4176–4185

    CAS  Google Scholar 

  40. Al-Muhtaseb SA, Ritter JA (2003) Preparation and properties of resorcinol-formaldehyde organic and carbon gels. Adv Mater 15:101–114

    CAS  Google Scholar 

  41. Biener J, Stadermann M, Suss M, Worsley MA, Biener MM, Rose KA, Baumann TF (2011) Advanced carbon aerogels for energy applications. Energy Environ Sci 4:656

    CAS  Google Scholar 

  42. Xia W, Qiu B, Xia D, Zou R (2013) Facile preparation of hierarchically porous carbons from metal-organic gels and their application in energy storage. Sci Rep 3:1935

    PubMed  PubMed Central  Google Scholar 

  43. Zheng G, Zhang Q, Cha JJ, Yang Y, Li W, Seh ZW, Cui Y (2013) Amphiphilic surface modification of hollow carbon nanofibers for improved cycle life of lithium sulfur batteries. Nano Lett 13:1265–1270

    CAS  Google Scholar 

  44. Zhou G, Yin LC, Wang DW, Li L, Pei S, Gentle IR, Li F, Cheng HM (2013) Fibrous hybrid of graphene and sulfur nanocrystals for high-performance lithium-sulfur batteries. ACS Nano 7:5367–5375

    CAS  PubMed  Google Scholar 

  45. Hwang J-Y, Kim HM, Lee S-K, Lee J-H, Abouimrane A, Khaleel MA, Belharouak I, Manthiram A, Sun Y-K (2016) High-energy, high-rate, Lithium-sulfur batteries: synergetic effect of hollow TiO2-webbed carbon nanotubes and a dual functional carbon-paper interlayer. Adv Energy Mater 6:1501480

    Google Scholar 

  46. Zhang K, Qin F, Lai Y, Li J, Lei X, Wang M, Lu H, Fang J (2016) Efficient fabrication of hierarchically porous graphene-derived aerogel and its application in Lithium sulfur battery. ACS Appl Mater Interfaces 8:6072–6081

    CAS  PubMed  Google Scholar 

  47. Su YS, Manthiram A (2012) Lithium-Sulphur batteries with a microporous carbon paper as a bifunctional interlayer. Nat Commun 3:1166

    PubMed  Google Scholar 

  48. Xu GL, Xu YF, Fang JC, Peng XX, Fu F, Huang L, Li JT, Sun SG (2013) Porous graphitic carbon loading ultra high sulfur as high-performance cathode of rechargeable lithium-sulfur batteries. ACS Appl Mater Interfaces 5:10782–10793

    CAS  PubMed  Google Scholar 

  49. Li HF, Yang XW, Wang XM, Liu MN, Ye FM, Wang J, Qiu YC, Li WF, Zhang YG (2015) Dense integration of graphene and sulfur through the soft approach for compact lithium/sulfur battery cathode. Nano Energy 12:468–475

    Google Scholar 

  50. Manthiram A, Fu Y, Chung SH, Zu C, Su YS (2014) Rechargeable lithium-sulfur batteries. Chem Rev 114:11751–11787

    CAS  PubMed  Google Scholar 

  51. Ferrari AC, Robertson J (2000) Interpretation of Raman spectra of disordered and amorphous carbon. Phys Rev B 61:14095–14107

    CAS  Google Scholar 

  52. Qin F, Wang X, Zhang K, Fang J, Li J, Lai Y (2017) High areal capacity cathode and electrolyte reservoir render practical Li-S batteries. Nano Energy 38:137–146

    CAS  Google Scholar 

Download references

Funding

This work was supported by the National Key R&D Program of China (No. 2018YFB0104200) and the Hong Kong Polytechnic University (Project No. 5-ZJL8) and Postgraduates Research Innovation Project (CX2018B040).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yanqing Lai or Haitao Huang.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(PDF 784 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qin, F., Zhang, K., Zhang, Z. et al. Graphene/carbon aerogel for high areal capacity sulfur cathode of Li-S batteries. Ionics 25, 4615–4624 (2019). https://doi.org/10.1007/s11581-019-03046-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-019-03046-w

Keywords

Navigation