Skip to main content
Log in

Probing hydroxyl radical generation from H2O2 upon plasmon excitation of gold nanorods using electron spin resonance: Molecular oxygen-mediated activation

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Gold nanostructures are among the noble metal nanomaterials being intensely studied due to their good biocompatibility, tunable localized surface plasmon resonance (SPR), and ease of modification. These properties give gold nanostructures many potential chemical and biomedical applications. Herein, we demonstrate the critical role of oxygen activation during the decomposition of hydrogen peroxide (H2O2) in the presence of photoexcited gold nanorods (AuNRs) by using electron spin resonance (ESR) techniques. Upon SPR excitation, O2 is activated first, and the resulting reactive intermediates further activate H2O2 to produce •OH. The reactive intermediates exhibit singlet oxygen-like (1O2-like) reactivity, indicated by 1O2-specific oxidation reaction, quenching behaviors, and the lack of the typical 1O2 ESR signal. In addition, by using the antioxidant sodium ascorbate (NaA) as an example, we show that hydroxyl radicals from H2O2 activation can induce much stronger NaA oxidation than that in the absence of H2O2. These results may have significant biomedical implications. For example, as oxidative stress levels are known to influence tumorigenesis and cancer progression, the ability to control redox status inside tumor microenvironments using noble metal nanostructures may provide new strategies for regulating the metabolism of reactive oxygen species and new approaches for cancer treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Linic, S.; Christopher, P.; Xin, H. L.; Marimuthu, A. Catalytic and photocatalytic transformations on metal nanoparticles with targeted geometric and plasmonic properties. Acc. Chem. Res. 2013, 46, 1890–1899.

    Article  Google Scholar 

  2. Liz-Marzán, L. M.; Murphy, C. J.; Wang, J. F. Nanoplasmonics. Chem. Soc. Rev. 2014, 43, 3820–3822.

    Article  Google Scholar 

  3. Clavero, C. Plasmon-induced hot-electron generation at nanoparticle/metal-oxide interfaces for photovoltaic and photocatalytic devices. Nat. Photonics 2014, 8, 95–103.

    Article  Google Scholar 

  4. Linic, S.; Aslam, U.; Boerigter, C.; Morabito, M. Photochemical transformations on plasmonic metal nanoparticles. Nat. Mater. 2015, 14, 567–576.

    Article  Google Scholar 

  5. Brongersma, M. L.; Halas, N. J.; Nordlander, P. Plasmoninduced hot carrier science and technology. Nat. Nanotechnol. 2015, 10, 25–34.

    Article  Google Scholar 

  6. Fang, C. H.; Jia, H. L.; Chang, S.; Ruan, Q. F.; Wang, P.; Chen, T.; Wang, J. F. (Gold core)/(titania shell) nanostructures for plasmon-enhanced photon harvesting and generation of reactive oxygen species. Energy Environ. Sci. 2014, 7, 3431–3438.

    Article  Google Scholar 

  7. Mukherjee, S.; Libisch, F.; Large, N.; Neumann, O.; Brown, L. V.; Cheng, J.; Lassiter, J. B.; Carter, E. A.; Nordlander, P.; Halas, N. J. Hot electrons do the impossible: Plasmon-induced dissociation of H2 on Au. Nano Lett. 2013, 13, 240–247.

    Article  Google Scholar 

  8. Lee, J.; Mubeen, S.; Ji, X. L.; Stucky, G. D.; Moskovits, M. Plasmonic photoanodes for solar water splitting with visible light. Nano Lett. 2012, 12, 5014–5019.

    Article  Google Scholar 

  9. Mubeen, S.; Lee, J.; Singh, N.; Krämer, S.; Stucky, G. D.; Moskovits, M. An autonomous photosynthetic device in which all charge carriers derive from surface plasmons. Nat. Nanotechnol. 2013, 8, 247–251.

    Article  Google Scholar 

  10. Vankayala, R.; Sagadevan, A.; Vijayaraghavan, P.; Kuo, C. L.; Hwang, K. C. Metal nanoparticles sensitize the formation of singlet oxygen. Angew. Chem., Int. Ed. 2011, 50, 10640–10644.

    Article  Google Scholar 

  11. Misawa, M.; Takahashi, J. Generation of reactive oxygen species induced by gold nanoparticles under x-ray and UV Irradiations. Nanomedicine 2011, 7, 604–614.

    Google Scholar 

  12. Pasparakis, G. Light-induced generation of singlet oxygen by naked gold nanoparticles and its implications to cancer cell phototherapy. Small 2013, 9, 4130–4134.

    Article  Google Scholar 

  13. Gao, L.; Liu, R.; Gao, F. P.; Wang, Y. L.; Jiang, X. L.; Gao, X. Y. Plasmon-mediated generation of reactive oxygen species from near-infrared light excited gold nanocages for photodynamic therapy in vitro. ACS Nano 2014, 8, 7260–7271.

    Article  Google Scholar 

  14. Labouret, T.; Audibert, J. F.; Pansu, R. B.; Palpant, B. Plasmon-assisted production of reactive oxygen species by single gold nanorods. Small 2015, 11, 4475–4479.

    Article  Google Scholar 

  15. Huang, Y.-F.; Zhang, M.; Zhao, L.-B.; Feng, J.-M.; Wu, D. Y.; Ren, B.; Tian, Z.-Q. Activation of oxygen on gold and silver nanoparticles assisted by surface plasmon resonances. Angew. Chem., Int. Ed. 2014, 53, 2353–2357.

    Article  Google Scholar 

  16. Long, R.; Mao, K. K.; Ye, X. D.; Yan, W. S.; Huang, Y. B.; Wang, J. Y.; Fu, Y.; Wang, X. S.; Wu, X. J.; Xie, Y. et al. Surface facet of palladium nanocrystals: A key parameter to the activation of molecular oxygen for organic catalysis and cancer treatment. J. Am. Chem. Soc. 2013, 135, 3200–3207.

    Article  Google Scholar 

  17. Daniel, M.-C.; Astruc, D. Gold nanoparticles: Assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology. Chem. Rev. 2004, 104, 293–346.

    Article  Google Scholar 

  18. Gong, J. L.; Mullins, C. B. Surface science investigations of oxidative chemistry on gold. Acc. Chem. Res. 2009, 42, 1063–1073.

    Article  Google Scholar 

  19. Chen, H. J.; Shao, L.; Li, Q.; Wang, J. F. Gold nanorods and their plasmonic properties. Chem. Soc. Rev. 2013, 42, 2679–2724.

    Article  Google Scholar 

  20. Vijayaraghavan, P.; Liu, C.-H.; Vankayala, R.; Chiang, C.-S.; Hwang, K. C. Designing multi-branched gold nanoechinus for NIR light activated dual modal photodynamic and photothermal therapy in the second biological window. Adv. Mater. 2014, 26, 6689–6695.

    Article  Google Scholar 

  21. Vankayala, R.; Huang, Y.-K.; Kalluru, P.; Chiang, C.-S.; Hwang, K. C. First demonstration of gold nanorods-mediated photodynamic therapeutic destruction of tumors via near infra-red light activation. Small 2014, 10, 1612–1622.

    Article  Google Scholar 

  22. Liu, M. Z.; Guyot-Sionnest, P. Mechanism of silver(I)-assisted growth of gold nanorods and bipyramids. J. Phys. Chem. B 2005, 109, 22192–22200.

    Article  Google Scholar 

  23. Wen, T.; He, W. W.; Chong, Y.; Liu, Y.; Yin, J. J.; Wu, X. C. Exploring environment-dependent effects of Pd nanostructures on reactive oxygen species (ROS) using electron spin resonance (ESR) technique: Implications for biomedical applications. Phys. Chem. Chem. Phys. 2015, 17, 24937–24943.

    Article  Google Scholar 

  24. Popp, C. A.; Hyde, J. S. Effects of oxygen on EPR spectra of nitroxide spin-label probes of model membranes. J. Magn. Reson. 1981, 43, 249–258.

    Google Scholar 

  25. Xia, Q. S.; Yin, J. J.; Fu, P. P.; Boudreau, M. D. Photoirradiation of Aloe vera by UVA—Formation of free radicals, singlet oxygen, superoxide, and induction of lipid peroxidation. Toxicol. Lett. 2007, 168, 165–175.

    Article  Google Scholar 

  26. Gautam, D. K.; Misro, M. M.; Chaki, S. P.; Sehgal, N. H2O2 at physiological concentrations modulates leydig cell function inducing oxidative stress and apoptosis. Apoptosis 2006, 11, 39–46.

    Article  Google Scholar 

  27. Dave, R. I.; Shah, N. P. Effectiveness of ascorbic acid as an oxygen scavenger in improving viability of probiotic bacteria in yoghurts made with commercial starter cultures. Int. Dairy J. 1997, 7, 435–443.

    Article  Google Scholar 

  28. Niki, E. Action of ascorbic acid as a scavenger of active and stable oxygen radicals. Am. J. Clin. Nutr. 1991, 54, 1119S–1124S.

    Google Scholar 

  29. Zhou, Y.-T.; He, W. W.; Wamer, W. G.; Hu, X. N.; Wu, X. C.; Lo, Y. M.; Yin, J.-J. Enzyme-mimetic effects of gold@platinum nanorods on the antioxidant activity of ascorbic acid. Nanoscale 2013, 5, 1583–1591.

    Article  Google Scholar 

  30. He, W. W.; Zhou, Y. T.; Wamer, W. G.; Hu, X. N.; Wu, X. C.; Zheng, Z.; Boudreau, M. D.; Yin, J. J. Intrinsic catalytic activity of Au nanoparticles with respect to hydrogen peroxide decomposition and superoxide scavenging. Biomaterials 2013, 34, 765–773.

    Article  Google Scholar 

  31. Lai, C.-S.; Hopwood, L. E.; Hyde, J. S.; Lukiewicz, S. ESR studies of O2 uptake by Chinese hamster ovary cells during the cell cycle. Proc. Natl. Acad. Sci. USA 1982, 79, 1166–1170.

    Article  Google Scholar 

  32. Mulvaney, P.; Pérez-Juste, J.; Giersig, M.; Liz-Marzán, L. M.; Pecharromán, C. Drastic surface plasmon mode shifts in gold nanorods due to electron charging. Plasmonics 2006, 1, 61–66.

    Article  Google Scholar 

  33. Jiang, C. F.; Zhao, T. T.; Yuan, P. Y.; Gao, N. Y.; Pan, Y. L.; Guan, Z. P.; Zhou, N.; Xu, Q. H. Two-photon induced photoluminescence and singlet oxygen generation from aggregated gold nanoparticles. ACS Appl. Mater. Interfaces 2013, 5, 4972–4977.

    Article  Google Scholar 

  34. Terentyuk, G.; Panfilova, E.; Khanadeev, V.; Chumakov, D.; Genina, E.; Bashkatov, A.; Tuchin, V.; Bucharskaya, A.; Maslyakova, G.; Khlebtsov, N. et al. Gold nanorods with a hematoporphyrin-loaded silica shell for dual-modality photodynamic and photothermal treatment of tumors in vivo. Nano Res. 2014, 7, 325–337.

    Article  Google Scholar 

  35. Yamamoto, Y.; Imai, N.; Mashima, R.; Konaka, R.; Inoue, M.; Dunlap, W. C. Singlet oxygen from irradiated titanium dioxide and zinc oxide. Method. Enzymol. 2000, 319, 29–37.

    Article  Google Scholar 

  36. Wang, J.; Zhu, G. Z.; You, M. X.; Song, E. Q.; Shukoor, M. I.; Zhang, K. J.; Altman, M. B.; Chen, Y.; Zhu, Z.; Huang, C. Z. et al. Assembly of aptamer switch probes and photosensitizer on gold nanorods for targeted photothermal and photodynamic cancer therapy. ACS Nano 2012, 6, 5070–5077.

    Article  Google Scholar 

  37. Wang, N. N.; Zhao, Z. L.; Lv, Y. F.; Fan, H. H.; Bai, H. R.; Meng, H. M.; Long, Y. Q.; Fu, T.; Zhang, X. B.; Tan, W. H. Gold nanorod-photosensitizer conjugate with extracellular pH-driven tumor targeting ability for photothermal/photodynamic therapy. Nano Res. 2014, 7, 1291–1301.

    Article  Google Scholar 

  38. Xu, Y. K.; He, R. Y.; Lin, D. D.; Ji, M. B.; Chen, J. Y. Laser beam controlled drug release from Ce6-gold nanorod composites in living cells: A FLIM study. Nanoscale 2015, 7, 2433–2441.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jun-Jie Yin or Xiaochun Wu.

Additional information

These authors contributed equally to this work.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wen, T., Zhang, H., Chong, Y. et al. Probing hydroxyl radical generation from H2O2 upon plasmon excitation of gold nanorods using electron spin resonance: Molecular oxygen-mediated activation. Nano Res. 9, 1663–1673 (2016). https://doi.org/10.1007/s12274-016-1060-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-016-1060-7

Keywords

Navigation