Skip to main content

Advertisement

Log in

Development of photovoltaic solar cells based on heterostructure of layered materials: challenges and opportunities

  • Review
  • Published:
Emergent Materials Aims and scope Submit manuscript

Abstract

Two-dimensional (2D) van derWaals layered materials created new avenue for the last decade in the field of optoelectronics for showing promising new and diverse applications. Strong light-matter interaction properties on these materials in single to few atomic layer form realized promising thinnest possible photovoltaic solar cells. Over the past few years, optoelectronics properties such as field-effect transistors, photodiodes, memory devices, optical switching, and excitonic physics of these materials have been intensively explored which indicates great potential for photovoltaic applications. Here, we reviewed the recent progress on photovoltaic solar cells of these 2D materials and their heterostructures with different device configurations. The p-n junction solar cells of vertical and lateral configuration devices are discussed in detail based on their stacking using mechanical transfer method or fabricated using CVD technique. The performance of each device configurations was also discussed based on their charge collection efficiency. In addition, we discussed the challenges and limitation of these photovoltaic solar cells and the possible routes to enhance the efficiency for future practical applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. N.S. Lewis, D.G. Nocera, Powering the planet: Chemical challenges in solar energy utilization. Proc. Natl. Acad. Sci. 103(43), 15729–15735 (2006)

    Article  CAS  Google Scholar 

  2. N.S. Lewis, Research opportunities to advance solar energy utilization. Science 351(6271) (2016)

  3. A. Polman, M. Knight, E.C. Garnett, B. Ehrler, W.C. Sinke, PPhotovoltaic materials: Present efficiencies and future challenges. Science 352(6283) (2016)

  4. L. El Chaar, N. El Zein, et al., Review of photovoltaic technologies. Renew. Sustain. Energy Rev. 15(5), 2165–2175 (2011)

    Article  CAS  Google Scholar 

  5. M. Gul, Y. Kotak, T. Muneer, Review on recent trend of solar photovoltaic technology. Energy Explor. Exploit. 34(4), 485–526 (2016)

    Article  CAS  Google Scholar 

  6. A. Shah, P. Torres, R. Tscharner, N. Wyrsch, H. Keppner, Photovoltaic technology: the case for thin-film solar cells. Science. 285(5428), 692–698 (1999)

    Article  CAS  Google Scholar 

  7. O. Schultz, S.W. Glunz, G.P. Willeke, Accelerated publication Multicrystalline silicon solar cells exceeding 20% efficiency. Progress in photovoltaics: Research and Applications. 12(7), 553–558 (2004)

    Article  CAS  Google Scholar 

  8. T. Saga, Advances in crystalline silicon solar cell technology for industrial mass production. NPG Asia Materials. 2(3), 96–102 (2010)

    Article  Google Scholar 

  9. W.S. Wong, A. Salleo, Vol. 11. Flexible electronics: Materials and Applications (Springer Science & Business Media, Berlin, 2009)

    Book  Google Scholar 

  10. S. Hegedus, Thin film solar modules: the low cost, high throughput and versatile alternative to si wafers. Progress in Photovoltaics: Research and Applications. 14(5), 393–411 (2006)

    Article  CAS  Google Scholar 

  11. K.L. Chopra, P.D. Paulson, V. Dutta, Thin-film solar cells: an overview. Progress in photovoltaics: Research and applications. 12(2-3), 69–92 (2004)

    Article  CAS  Google Scholar 

  12. B. O’regan, M. Grätzel, A low-cost, high-efficiency solar cell based on dye-sensitized colloidal tio 2 films. Nature. 353(6346), 737–740 (1991)

    Article  Google Scholar 

  13. M. Stefik, F.J. Heiligtag, M. Niederberger, M. Grätzel, Improved nonaqueous synthesis of tio2 for dye-sensitized solar cells. ACS nano. 7(10), 8981–8989 (2013)

    Article  CAS  Google Scholar 

  14. P. Reinhard, A. Chirilă, P. Blösch, F. Pianezzi, S. Nishiwaki, S. Buechelers, A. Tiwari, in Review of progress toward 20% efficiency flexible cigs solar cells and manufacturing issues of solar modules. 2012 IEEE 38th Photovoltaic Specialists Conference (PVSC) PART 2 (IEEE, 2012), pp. 1–9

  15. M.A. Green, A. Ho-Baillie, H.J. Snaith, The emergence of perovskite solar cells. Nature Photonics. 8(7), 506–514 (2014)

    Article  CAS  Google Scholar 

  16. E.D. Kosten, J.H. Atwater, J. Parsons, A. Polman, H.A. Atwater, Highly efficient gaas solar cells by limiting light emission angle. Light: Science & Applications. 2(1), e45 (2013)

    Article  CAS  Google Scholar 

  17. B.E. Hardin, H.J. Snaith, M.D. McGehee, The renaissance of dye-sensitized solar cells. Nat. Photonics. 6(3), 162–169 (2012)

    Article  CAS  Google Scholar 

  18. P.V. Kamat, Quantum dot solar cells. the next big thing in photovoltaics. J. Phys. Chem. Lett. 4(6), 908–918 (2013)

    Article  CAS  Google Scholar 

  19. K.A. Mazzio, C.K. Luscombe, The future of organic photovoltaics. Chem. Soc. Rev. 44(1), 78–90 (2014)

    Article  Google Scholar 

  20. Q. Liu, Y. Jiang, K. Jin, J. Qin, J. Xu, W. Li, J. Xiong, J. Liu, Z. Xiao, K. Sun, 18% efficiency organic solar cells. Sci. Bull. 65(4), 272–275 (2020)

    Article  CAS  Google Scholar 

  21. K. Jin, Z. Xiao, L. Ding, D18, an eximious solar polymer!. J. Semicond. 42(1), 010502–010502 (2021)

    Article  Google Scholar 

  22. N.-G. Park, Organometal perovskite light absorbers toward a 20% efficiency low-cost solid-state mesoscopic solar cell. J. Phys. Chem. Lett. 4(15), 2423–2429 (2013)

    Article  CAS  Google Scholar 

  23. S. Mozaffari, M.R. Nateghi, M.B. Zarandi, An overview of the challenges in the commercialization of dye sensitized solar cells. Renew. Sustain. Energy Rev. 71, 675–686 (2017)

    Article  CAS  Google Scholar 

  24. H.-S. Kim, J.-Y. Seo, N.-G. Park, Material and device stability in perovskite solar cells. ChemSusChem. 9(18), 2528–2540 (2016)

    Article  CAS  Google Scholar 

  25. K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, I.V. Grigorieva, A.A. Firsov, Electric field effect in atomically thin carbon films. Science. 306(5696), 666–669 (2004)

    Article  CAS  Google Scholar 

  26. K.S. Novoselov, V.I. Fal, L. Colombo, P.R. Gellert, M.G. Schwab, K. Kim, et al., A roadmap for graphene. Nature. 490(7419), 192–200 (2012)

    Article  CAS  Google Scholar 

  27. M. Shanmugam, R. Jacobs-Gedrim, E.S. Song, B. Yu, Two-dimensional layered semiconductor/graphene heterostructures for solar photovoltaic applications. Nanoscale. 6(21), 12682–12689 (2014)

    Article  CAS  Google Scholar 

  28. K.-E. Byun, H.-J. Chung, J. Lee, H. Yang, H.J. Song, J. Heo, D.H. Seo, S. Park, S.W. Hwang, I. Yoo, et al., Graphene for true ohmic contact at metal–semiconductor junctions. Nano Lett. 13(9), 4001–4005 (2013)

    Article  CAS  Google Scholar 

  29. Y. Cui, L. Hong, J. Hou, Organic photovoltaic cells for indoor applications: Opportunities and challenges. ACS Appl. Mater. Interfaces. 12(35), 38815–38828 (2020)

    Article  CAS  Google Scholar 

  30. Z. Liu, S.P. Lau, F. Yan, Functionalized graphene and other two-dimensional materials for photovoltaic devices: device design and processing. Chem. Soc. Rev. 44(15), 5638–5679 (2015)

    Article  CAS  Google Scholar 

  31. N.R. Glavin, C. Muratore, M. Snure, Toward 2d materials for flexible electronics: opportunities and outlook. Oxford Open Materials Science. 1(1), itaa002 (2020)

    Article  Google Scholar 

  32. S. Das, D. Pandey, J. Thomas, T. Roy, The role of graphene and other 2d materials in solar photovoltaics. Adv. Mater. 31(1), 1802722 (2019)

    Article  CAS  Google Scholar 

  33. N.H. Hemasiri, S. Kazim, S. Ahmad, Reduced trap density and mitigating the interfacial losses by placing 2d dichalcogenide material at perovskite/htm interface in a dopant free perovskite solar cells. Nano Energy. 77, 105292 (2020)

    Article  CAS  Google Scholar 

  34. M. Pegu, M.P.U. Haris, S. Kazim, S. Ahmad, Understanding and harnessing the potential of layered perovskite-based absorbers for solar cells. Emergent Materials, pp 1–28 (2020)

  35. A.J. Mannix, B. Kiraly, M.C. Hersam, N.P. Guisinger, Synthesis and chemistry of elemental 2d materials. Nat. Rev. Chem. 1(2), 1–14 (2017)

    Article  CAS  Google Scholar 

  36. P. Miró, M. Audiffred, T. Heine, An atlas of two-dimensional materials. Chem. Soc. Rev. 43(18), 6537–6554 (2014)

    Article  Google Scholar 

  37. C.R. Serrao, A.M. Diamond, S.-L. Hsu, L. You, S. Gadgil, J. Clarkson, C. Carraro, R. Maboudian, C. Hu, S. Salahuddin, Highly crystalline mos2 thin films grown by pulsed laser deposition. Appl. Phys. Lett. 106(5), 052101 (2015)

    Article  CAS  Google Scholar 

  38. J. Tao, J. Chai, X. Lu, L.M. Wong, T.I. Wong, J. Pan, Q. Xiong, D. Chi, S. Wang, Growth of wafer-scale mos 2 monolayer by magnetron sputtering. Nanoscale. 7(6), 2497–2503 (2015)

    Article  CAS  Google Scholar 

  39. Y.-T. Ho, C.-H. Ma, T.-T. Luong, L.-L. Wei, T.-C. Yen, W.-T. Hsu, W.-H. Chang, Y.-C. Chu, Y.-Y. Tu, K.P. Pande, et al., Layered mos2 grown on c-sapphire by pulsed laser deposition. Physica Status Solidi (RRL)–Rapid Research Letters. 9(3), 187–191 (2015)

    Article  CAS  Google Scholar 

  40. M. Wasala, J. Zhang, S. Ghosh, B. Muchharla, R. Malecek, D. Mazumdar, H. Samassekou, M. Gaither-Ganim, A. Morrison, N.-P. Lopez, et al. , Effect of underlying boron nitride thickness on photocurrent response in molybdenum disulfide-boron nitride heterostructures. J. Mater. Res, 31(7) (2016)

  41. G. Siegel, Y.P.V. Subbaiah, M.C. Prestgard, A. Tiwari, Growth of centimeter-scale atomically thin mos2 films by pulsed laser deposition. APL Materials. 3(5), 056103 (2015)

    Article  CAS  Google Scholar 

  42. H. Samassekou, A. Alkabsh, M. Wasala, M. Eaton, A. Walber, A. Walker, O. Pitkänen, K. Kordas, S. Talapatra, T. Jayasekera, et al., Viable route towards large-area 2d mos2 using magnetron sputtering. 2D Materials. 4(2), 021002 (2017)

    Article  Google Scholar 

  43. J.M. Wofford, S. Nakhaie, T. Krause, X. Liu, M. Ramsteiner, M. Hanke, H. Riechert, J.M.J. Lopes, A hybrid mbe-based growth method for large-area synthesis of stacked hexagonal boron nitride/graphene heterostructures. Sci. Rep. 7(1), 1–10 (2017)

    Article  Google Scholar 

  44. K.S. Novoselov, A.H. Castro Neto, Two-dimensional crystals-based heterostructures: materials with tailored properties. Physica Scripta. 2012(T146), 014006 (2012)

    Article  CAS  Google Scholar 

  45. V. Nicolosi, M. Chhowalla, M.G. Kanatzidis, M.S. Strano, J.N. Coleman, Liquid exfoliation of layered materials. Science 340(6139) (2013)

  46. K.S. Novoselov, D. Jiang, F. Schedin, T.J. Booth, V.V. Khotkevich, S.V. Morozov, A.K. Geim, Two-dimensional atomic crystals. Proc. Natl. Acad. Sci. 102(30), 10451–10453 (2005)

    Article  CAS  Google Scholar 

  47. M. Xu, T. Liang, M. Shi, H. Chen, Graphene-like two-dimensional materials. Chem. Rev. 113(5), 3766–3798 (2013)

    Article  CAS  Google Scholar 

  48. B. Radisavljevic, A. Radenovic, J. Brivio, V. Giacometti, A. Kis, Single-layer mos 2 transistors. Nature Nanotechnol. 6(3), 147–150 (2011)

    Article  CAS  Google Scholar 

  49. D. Jariwala, V.K. Sangwan, D.J. Late, J.E. Johns, V.P. Dravid, T.J. Marks, L.J. Lauhon, M.C. Hersam, Band-like transport in high mobility unencapsulated single-layer mos2 transistors. Appl. Phys. Lett. 102(17), 173107 (2013)

    Article  CAS  Google Scholar 

  50. Jong-Soo Rhyee, J. Kwon, P. Dak, J.H. Kim, S.M. Kim, J. Park, Y.K. Hong, W.G. Song, I. Omkaram, M.A. Alam, et al., High-mobility transistors based on large-area and highly crystalline cvd-grown mose2 films on insulating substrates. Adv. Mater. 28(12), 2316–2321 (2016)

    Article  CAS  Google Scholar 

  51. Z. Cai, B. Liu, X. Zou, H.-M. Cheng, Chemical vapor deposition growth and applications of two-dimensional materials and their heterostructures. Chem. Rev. 118(13), 6091–6133 (2018)

    Article  CAS  Google Scholar 

  52. X. Chen, X. Lu, B. Deng, O. Sinai, Y. Shao, C. Li, S. Yuan, V. Tran, K. Watanabe, T. Taniguchi, et al., Widely tunable black phosphorus mid-infrared photodetector. Nat. Commun. 8 (1), 1–7 (2017)

    Article  CAS  Google Scholar 

  53. R.M. Liam Britnell, A. Ribeiro, R. Eckmann, B.D. Jalil, A. Belle, Y.-J. Mishchenko, R.V. Kim, T. Gorbachev, S.V. Georgiou, et al., Morozov Strong light-matter interactions in heterostructures of atomically thin films. Science. 340(6138), 1311–1314 (2013)

    Article  CAS  Google Scholar 

  54. C. Schneider, M.M. Glazov, T. Korn, S. Höfling, B. Urbaszek, Two-dimensional semiconductors in the regime of strong light-matter coupling. Nat. Commun. 9(1), 1–9 (2018)

    Article  CAS  Google Scholar 

  55. Q.H. Wang, K. Kalantar-Zadeh, A. Kis, J.N. Coleman, M.S. Strano, Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nat. Nanotechnol. 7(11), 699–712 (2012)

    Article  CAS  Google Scholar 

  56. A.K. Geim, I.V. Grigorieva, Van der waals heterostructures. Nature. 499(7459), 419–425 (2013)

    Article  CAS  Google Scholar 

  57. R. Frisenda, A.J. Molina-Mendoza, T. Mueller, A. Castellanos-Gomez, H.S.J. van der Zant, Atomically thin p–n junctions based on two-dimensional materials. Chem. Soc. Rev. 47(9), 3339–3358 (2018)

    Article  CAS  Google Scholar 

  58. M.M. Furchi, A. Pospischil, F. Libisch, J. Burgdörfer, T. Mueller, Photovoltaic effect in an electrically tunable van der waals heterojunction. Nano Lett. 14(8), 4785–4791 (2014)

    Article  CAS  Google Scholar 

  59. R. Cheng, D. Li, H. Zhou, C. Wang, A. Yin, S. Jiang, Y. Liu, Y. Chen, Y. Huang, X. Duan, Electroluminescence and photocurrent generation from atomically sharp wse2/mos2 heterojunction p–n diodes. Nano Lett. 14(10), 5590–5597 (2014)

    Article  CAS  Google Scholar 

  60. J. Wong, D. Jariwala, G. Tagliabue, K. Tat, A.R. Davoyan, M.C. Sherrott, H.A. Atwater, High photovoltaic quantum efficiency in ultrathin van der waals heterostructures. ACS Nano. 11(7), 7230–7240 (2017)

    Article  CAS  Google Scholar 

  61. C.-H. Lee, G.-H. Lee, A.M. Van Der Zande, W. Chen, Y. Li, M. Han, X. Cui, G. Arefe, C. Nuckolls, T.F. Heinz, et al., Atomically thin p–n junctions with van der waals heterointerfaces. Nature Nanotechnol. 9(9), 676 (2014)

    Article  CAS  Google Scholar 

  62. D.-H. Kwak, H.-S. Ra, M.-H. Jeong, A.-Y. Lee, J.-S. Lee, High-performance photovoltaic effect with electrically balanced charge carriers in black phosphorus and ws2 heterojunction. Adv. Mater. Interfaces. 5(18), 1800671 (2018)

    Article  CAS  Google Scholar 

  63. H.-M. Li, D. Lee, D. Qu, X. Liu, J. Ryu, A. Seabaugh, W.J. Yoo, Ultimate thin vertical p–n junction composed of two-dimensional layered molybdenum disulfide. Nat. Commun. 6(1), 1–9 (2015)

    Google Scholar 

  64. J. Miao, Z. Xu, Q. Li, A. Bowman, S. Zhang, W. Hu, Z. Zhou, C. Wang, Vertically stacked and self-encapsulated van der waals heterojunction diodes using two-dimensional layered semiconductors. ACS Nano. 11(10), 10472–10479 (2017)

    Article  CAS  Google Scholar 

  65. N.R. Pradhan, C. Garcia, M.C. Lucking, Srimanta P., J. Martinez, Daniel R., R. Divan, A.V. Sumant, H. Terrones, J.L. Mendoza-Cortes, et al., Raman and electrical transport properties of few-layered arsenic-doped black phosphorus. Nanoscale. 11(39), 18449–18463 (2019)

    Article  CAS  Google Scholar 

  66. A. Pezeshki, S.H.H. Shokouh, T. Nazari, K. Oh, S. Im, Electric and photovoltaic behavior of a few-layer α-mote2/mos2 dichalcogenide heterojunction. Adv. Mater. 28(16), 3216–3222 (2016)

    Article  CAS  Google Scholar 

  67. N. Flöry, A. Jain, P. Bharadwaj, M. Parzefall, T. Taniguchi, K. Watanabe, L. Novotny, A wse2/mose2 heterostructure photovoltaic device. Appl. Phys. Lett. 107(12), 123106 (2015)

    Article  CAS  Google Scholar 

  68. A.-J. Cho, S.D. Namgung, H. Kim, J.-Y. Kwon, Electric and photovoltaic characteristics of a multi-layer res2/rese2 heterostructure. APL Mater. 5(7), 076101 (2017)

    Article  CAS  Google Scholar 

  69. F. Wang, Z. Wang, K. Xu, F. Wang, Q. Wang, Y. Huang, L. Yin, J. He, Tunable gate-mos2 van der waals p-n junctions with novel optoelectronic performance. Nano Letters. 15(11), 7558–7566 (2015)

    Article  CAS  Google Scholar 

  70. A.J. Molina-Mendoza, et al., E. Giovanelli, W.S. Paz, M.A. Niño, J.O. Island, C. Evangeli, L. Aballe, M. Foerster, H.S.J. Van Der Zant, G. Rubio-Bollinger, et al., Franckeite as a naturally occurring van der waals heterostructure. Nat. Commun. 8(1), 1–9 (2017)

    Article  CAS  Google Scholar 

  71. T. Yang, B. Zheng, Z. Wang, T. Xu, C. Pan, J. Zou, X. Zhang, Z. Qi, H. Liu, Y. Feng, et al., Van der waals epitaxial growth and optoelectronics of large-scale wse 2/sns 2 vertical bilayer p–n junctions. Nat. Commun. 8(1), 1–9 (2017)

    Article  CAS  Google Scholar 

  72. H.S. Lee, J. Ahn, W. Shim, S. Im, D.K. Hwang, 2d wse2/mos2 van der waals heterojunction photodiode for visible-near infrared broadband detection. Appl. Phys. Lett. 113(16), 163102 (2018)

    Article  CAS  Google Scholar 

  73. Y. Deng, Z. Luo, N.J. Conrad, H. Liu, Y. Gong, S. Najmaei, P.M. Ajayan, J. Lou, X. Xu, P.D. Ye, Black phosphorus-monolayer mos2 van der waals heterojunction p–n diode. ACS Nano. 8 (8), 8292–8299 (2014)

    Article  CAS  Google Scholar 

  74. M.-Y. Li, Y. Shi, C.-C. Cheng, L.-S. Lu, Y.-C. Lin, H.-L. Tang, M.-L. Tsai, C.-W. Chu, K.-H. Wei, H. Jr. He, et al., Epitaxial growth of a monolayer wse2-mos2 lateral pn junction with an atomically sharp interface. Science. 349(6247), 524–528 (2015)

    Article  CAS  Google Scholar 

  75. S. Memaran, N.R. Pradhan, Z. Lu, D. Rhodes, J. Ludwig, Q. Zhou, O. Ogunsolu, P.M. Ajayan, D. Smirnov, A. I. Fernández-Domínguez, et al., Pronounced photovoltaic response from multilayered transition-metal dichalcogenides pn-junctions. Nano Lett. 15(11), 7532–7538 (2015)

    Article  CAS  Google Scholar 

  76. B.W.H. Baugher, H.O.H. Churchill, Y. Yang, P. Jarillo-Herrero, Optoelectronic devices based on electrically tunable p–n diodes in a monolayer dichalcogenide. Nat. Nanotechnol. 9(4), 262–267 (2014)

    Article  CAS  Google Scholar 

  77. M.-L. Tsai, M.-Y. Li, J.R.D. Retamal, K.-T. Lam, Y.-C. Lin, K. Suenaga, L.-J. Chen, G. Liang, L.-J. Li, H. Jr. He, Single atomically sharp lateral monolayer p-n heterojunction solar cells with extraordinarily high power conversion efficiency. Adv. Mater. 29(32), 1701168 (2017)

    Article  CAS  Google Scholar 

  78. H. Fang, C. Battaglia, C. Carraro, S. Nemsak, B. Ozdol, J.S. Kang, H.A. Bechtel, S.B. Desai, F. Kronast, A.A. Unal, et al., Strong interlayer coupling in van der waals heterostructures built from single-layer chalcogenides. Proc. Natl. Acad. Sci. 111(17), 6198–6202 (2014)

    Article  CAS  Google Scholar 

  79. X. Duan, C. Wang, J.C. Shaw, R. Cheng, Y. Chen, H. Li, X. Wu, Y. Tang, Q. Zhang, A. Pan, et al., Lateral epitaxial growth of two-dimensional layered semiconductor heterojunctions. Nat. Nanotechnol. 9(12), 1024–1030 (2014)

    Article  CAS  Google Scholar 

  80. P.K. Sahoo, S. Memaran, F.A. Nugera, Y. Xin, T.D. Márquez, Z. Lu, W. Zheng, N.D. Zhigadlo, D. Smirnov, L. Balicas, et al., Bilayer lateral heterostructures of transition-metal dichalcogenides and their optoelectronic response. ACS Nano. 13(11), 12372–12384 (2019)

    Article  CAS  Google Scholar 

  81. R. Bratschitsch, Optoelectronic devices: monolayer diodes light up. Nat. Nanotechnol. 9(4), 247–248 (2014)

    Article  CAS  Google Scholar 

  82. J.S. Ross, P. Klement, A.M. Jones, N.J. Ghimire, Jiaqiang Y., D. Mandrus, T. Taniguchi, K. Watanabe, K. Kitamura, W. Yao, et al., Electrically tunable excitonic light-emitting diodes based on monolayer wse 2 p-n junctions. Nat. Nanotechnol. 9(4), 268–272 (2014)

    Article  CAS  Google Scholar 

  83. A. Pospischil, M.M. Furchi, T. Mueller, Solar-energy conversion and light emission in an atomic monolayer p–n diode. Nat. Nanotechnol. 9(4), 257–261 (2014)

    Article  CAS  Google Scholar 

  84. G. Wang, L. Bao, T. Pei, R. Ma, Y.-Y. Zhang, L. Sun, G. Zhang, H. Yang, J. Li, C. Gu, et al., Introduction of interfacial charges to black phosphorus for a family of planar devices. Nano Lett. 16(11), 6870–6878 (2016)

    Article  CAS  Google Scholar 

  85. E.C. Peters, E.J.H. Lee, M. Burghard, K. Kern, Gate dependent photocurrents at a graphene pn junction. Appl. Phys. Lett. 97(19), 193102 (2010)

    Article  CAS  Google Scholar 

  86. M. Buscema, D.J. Groenendijk, G.A. Steele, H.S. Van Der Zant, A. Castellanos-Gomez, Photovoltaic effect in few-layer black phosphorus pn junctions defined by local electrostatic gating. Nat. Commun. 5(1), 1–6 (2014)

    Article  CAS  Google Scholar 

  87. O. Lopez-Sanchez, D. Lembke, M. Kayci, A. Radenovic, A. Kis, Ultrasensitive photodetectors based on monolayer mos 2. Nat. Nanotechnol. 8(7), 497–501 (2013)

    Article  CAS  Google Scholar 

  88. Z. Yin, H. Li, H. Li, L. Jiang, Y. Shi, Y. Sun, G. Lu, Q. Zhang, X. Chen, H. Zhang, Single-layer mos2 phototransistors. ACS Nano. 6(1), 74–80 (2012)

    Article  CAS  Google Scholar 

  89. N. Perea-López, A.L. Elías, A. Berkdemir, A. Castro-Beltran, H. R Gutiérrez, S. Feng, R. Lv, T. Hayashi, F. López-Urías, S. Ghosh, et al., Photosensor device based on few-layered ws2 films. Adv. Funct. Mater. 23(44), 5511–5517 (2013)

    Article  CAS  Google Scholar 

  90. G. Wu, X. Wang, Y. Chen, S. Wu, H. Shen, T. Lin, J. Ge, W. Hu, S.-T. Zhang, X.J. Meng, et al., Two-dimensional series connected photovoltaic cells defined by ferroelectric domains. Appl. Phys. Lett. 116(7), 073101 (2020)

    Article  CAS  Google Scholar 

  91. Sujoy G., P.D. Patil, M. Wasala, S. Lei, A. Nolander, P. Sivakumar, R. Vajtai, P. Ajayan, S. Talapatra, Fast photoresponse and high detectivity in copper indium selenide (cuin7se11) phototransistors. 2D Materials. 5(1), 015001 (2017)

    Article  CAS  Google Scholar 

  92. M. Buscema, J.O. Island, D.J. Groenendijk, S.I. Blanter, G.A. Steele, H.S.J. van der Zant, A. Castellanos-Gomez, Photocurrent generation with two-dimensional van der waals semiconductors. Chem. Soc. Rev. 44(11), 3691–3718 (2015)

    Article  CAS  Google Scholar 

  93. N.R. Pradhan, Z. Lu, D. Rhodes, D. Smirnov, E. Manousakis, L. Balicas, An optoelectronic switch based on intrinsic dual schottky diodes in ambipolar mose2 field-effect transistors. Adv. Electron. Mater. 1(11), 1500215 (2015)

    Article  CAS  Google Scholar 

  94. S.J. Haigh, A. Gholinia, R. Jalil, S. Romani, L. Britnell, D.C. Elias, K.S. Novoselov, L.A. Ponomarenko, A.K. Geim, R. Gorbachev, Cross-sectional imaging of individual layers and buried interfaces of graphene-based heterostructures and superlattices. Nat. Mater. 11(9), 764–767 (2012)

    Article  CAS  Google Scholar 

  95. M. Jeong, I.W. Choi, E.M. Go, Y. Cho, M. Kim, B. Lee, S. Jeong, Y. Jo, H.W. Choi, J. Lee, et al., Stable perovskite solar cells with efficiency exceeding 24.8% and 0.3-v voltage loss. Science. 369(6511), 1615–1620 (2020)

    Article  CAS  Google Scholar 

  96. N.-G. Park, Green solvent for perovskite solar cell production. Nat. Sustainability: 1–2 (2020)

  97. H. Ren, S. Yu, L. Chao, Y. Xia, Y. Sun, S. Zuo, F. Li, T. Niu, Y. Yang, H. Ju, et al., Efficient and stable ruddlesden–popper perovskite solar cell with tailored interlayer molecular interaction. Nat. Photonics. 14(3), 154–163 (2020)

    Article  CAS  Google Scholar 

  98. B. Li, Q. Zhang, S. Zhang, Z. Ahmad, T. Chidanguro, A.H. Davis, Y.C. Simon, X. Gu, W. Zheng, N. Pradhan, et al., Spontaneously supersaturated nucleation strategy for high reproducible and efficient perovskite solar cells. Chem. Eng. J. 405, 126998 (2020)

    Article  CAS  Google Scholar 

  99. S. Tepner, L. Ney, M. Linse, A. Lorenz, M. Pospischil, K. Masuri, F. Clement, Screen pattern simulation for an improved front-side ag-electrode metallization of si-solar cells. Prog. Photovolt. Res. Appl. 28(10), 1054–1062 (2020)

    Article  CAS  Google Scholar 

  100. A. Padhy, B. Vishal, P. Verma, G. Dwivedi, A.K. Behura, Fabrication of parabolic trough hybrid solar pv-t collector using a-si thin film solar cells in Indian perspective. Materials Today: Proceedings (2020)

  101. F. Xiong, J. Zhang, Z. Zhu, X. Yuan, S. Qin, Ultrabroadband, more than one order absorption enhancement in graphene with plasmonic light trapping. Scientific Rep. 5(1), 1–8 (2015)

    CAS  Google Scholar 

  102. T.J. Echtermeyer, L. Britnell, P.K. Jasnos, A. Lombardo, R.V. Gorbachev, A.N. Grigorenko, A.K. Geim, A.C. Ferrari, K.S. Novoselov, Strong plasmonic enhancement of photovoltage in graphene. Nat. Commun. 2(1), 1–5 (2011)

    Article  CAS  Google Scholar 

  103. H. Wang, S. Li, R. Ai, H. He, L. Shao, J. Wang, Plasmonically enabled two-dimensional material-based optoelectronic devices. Nanoscale. 12(15), 8095–8108 (2020)

    Article  CAS  Google Scholar 

  104. X. Han, J. Xing, H. Xu, Y. Huang, D. Li, J. Lu, P. Li, Y. Wu, Remarkable improved photoelectric performance of sns2 field-effect transistor with au plasmonic nanostructures. Nanotechnology. 31(21), 215201 (2020)

    Article  CAS  Google Scholar 

  105. Z. Liang, J. Sun, Y. Jiang, L. Jiang, X. Chen, Plasmonic enhanced optoelectronic devices. Plasmonics. 9(4), 859–866 (2014)

    Article  Google Scholar 

  106. J. Lin, H. Li, H. Zhang, W. Chen, Plasmonic enhancement of photocurrent in mos2 field-effect-transistor. Appl. Phys. Lett. 102(20), 203109 (2013)

    Article  CAS  Google Scholar 

  107. P. Sriram, Y.-P. Wen, A. Manikandan, K.-C. Hsu, S.-Y. Tang, B.-W. Hsu, Y.-Z. Chen, Ha.-W. Lin, H.-T. Jeng, Y.-L. Chueh, et al., Enhancing quantum yield in strained mos2 bilayers by morphology-controlled plasmonic nanostructures toward superior photodetectors. Chem. Mater. 32(6), 2242–2252 (2020)

    Article  CAS  Google Scholar 

  108. Q. Zhang, J. Wei, J. Liu, Z. Wang, M. Lei, Q. Ruge, 2d/2d electrical contacts in the monolayer wse2 transistors: A first-principles study. ACS Applied Nano Materials. 2(5), 2796–2805 (2019)

    Article  CAS  Google Scholar 

  109. P. Das, J. Nash, M. Webb, R. Burns, V.N. Mapara, G. Ghimire, D. Rosenmann, R. Divan, D. Karaiskaj, S.A. McGill, et al., High broadband photoconductivity of few-layered mos 2 field-effect transistors measured using multi-terminal methods: effects of contact resistance. Nanoscale (2020)

  110. D.S. Schulman, A.J. Arnold, S. Das, Contact engineering for 2d materials and devices. Chem. Soc. Rev. 47(9), 3037–3058 (2018)

    Article  CAS  Google Scholar 

  111. C. Garcia, N. Pradhan, D. Rhodes, L. Balicas, S.A. McGill, Photogating and high gain in res2 field-effect transistors. J. Appl. Phys. 124(20), 204306 (2018)

    Article  CAS  Google Scholar 

  112. N.R. Pradhan, C. Garcia, J. Holleman, D. Rhodes, C. Parker, S. Talapatra, M. Terrones, L. Balicas, S.A. McGill, Photoconductivity of few-layered p-wse2 phototransistors via multi-terminal measurements. 2D Materials. 3(4), 041004 (2016)

    Article  CAS  Google Scholar 

  113. W.S. Leong, X. Luo, Y. Li, K.H. Khoo, S.Y. Quek, J.T.L. Thong, Low resistance metal contacts to mos2 devices with nickel-etched-graphene electrodes. Acs Nano. 9(1), 869–877 (2015)

    Article  CAS  Google Scholar 

  114. Y. Liu, H. Wu, H.-C. Cheng, S. Yang, E. Zhu, Q. He, M. Ding, D. Li, J. Guo, N.O. Weiss, et al., Toward barrier free contact to molybdenum disulfide using graphene electrodes. Nano Lett. 15(5), 3030–3034 (2015)

    Article  CAS  Google Scholar 

  115. T. Kim, S. Fan, S. Lee, M.-K. Joo, Y.H. Lee, High-mobility junction field-effect transistor via graphene/mos 2 heterointerface. Sci. Rep. 10(1), 1–8 (2020)

    CAS  Google Scholar 

  116. X. Lv, W. Wei, P. Zhao, J. Li, B. Huang, Y. Dai, Tunable schottky contacts in mse 2/nbse 2 (m= mo and w) heterostructures and promising application potential in field-effect transistors. Phys. Chem. Chem. Phys. 20(3), 1897–1903 (2018)

    Article  CAS  Google Scholar 

  117. S.B. Son, Y. Kim, A. Kim, B. Cho, W.-K. Hong, Ultraviolet wavelength-dependent optoelectronic properties in two-dimensional nbse2–wse2 van der waals heterojunction-based field-effect transistors. ACS Appl. Mater. Interfaces. 9(47), 41537–41545 (2017)

    Article  CAS  Google Scholar 

  118. Hsun-Jen Chuang, B. Chamlagain, M. Koehler, M.M. Perera, J. Yan, D. Mandrus, D. Tomanek, Z. Zhou, Low-resistance 2d/2d ohmic contacts: a universal approach to high-performance wse2, mos2, and mose2 transistors. Nano Lett. 16(3), 1896–1902 (2016)

    Article  CAS  Google Scholar 

  119. K. Sotthewes, R.V. Bremen, E. Dollekamp, T. Boulogne, K. Nowakowski, D. Kas, H.J.W. Zandvliet, P. Bampoulis, Universal fermi-level pinning in transition-metal dichalcogenides. J. Phys. Chem. C. 123(9), 5411–5420 (2019)

    Article  CAS  Google Scholar 

  120. G.-S. Kim, S.-H. Kim, J. Park, K.H. Han, J. Kim, H.-Y. Yu, Schottky barrier height engineering for electrical contacts of multilayered mos2 transistors with reduction of metal-induced gap states. ACS Nano. 12(6), 6292–6300 (2018)

    Article  CAS  Google Scholar 

  121. Y. Liu, P. Stradins, S.-H. Wei, Van der waals metal-semiconductor junction: Weak fermi level pinning enables effective tuning of Schottky barrier. Science Advances. 2(4), e1600069 (2016)

    Article  CAS  Google Scholar 

Download references

Funding

The authors would like to acknowledge the financial support from NSF PREM through NSF-DMR#1826886 and HBCU-UP Excellence in research NSF-DMR#1900692.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nihar R. Pradhan.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Das, P., Behura, S.K., McGill, S.A. et al. Development of photovoltaic solar cells based on heterostructure of layered materials: challenges and opportunities. emergent mater. 4, 881–900 (2021). https://doi.org/10.1007/s42247-021-00205-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42247-021-00205-6

Navigation