Skip to main content

Advertisement

Log in

Bioinspired Self-assembly Nanochaperone Inhibits Tau-Derived PHF6 Peptide Aggregation in Alzheimer’s Disease

  • Research Article
  • Published:
Chinese Journal of Polymer Science Aims and scope Submit manuscript

Abstract

After repeated frustrations with amyloid beta (Aβ)-targeted clinical trials for Alzheimer’s disease (AD) in recent years, the therapeutic focus of AD has gradually shifted from to tau protein. The misfolding and aggregation of tau protein into neurofibrillary tangles (NFTs) cause neuron death and synaptic dysfunction, and the deposition of NFTs is more closely related to the severity of AD than Aβ plaques. Thus, it has great potential to target tau protein aggregation for AD treatment. The hexapeptide VQIVYK (known as PHF6) in tau protein has been found to play a dominant role for tau aggregation and was widely used as a model to design tau protein aggregation inhibitors. Here, inspired by natural heat shock protein (HSPs), we fabricated a self-assembly nanochaperone based on mixed-shell polymeric micelle (MSPM) as a novel tau-targeted AD therapy. With tunable phase-separated microdomains on the surface, the nanochaperone could effectively bind with PHF6 aggregates, inhibit PHF6 aggregation, block neuronal internalization of PHF6 species, thus significantly alleviating PHF6 mediated neurotoxicity. Moreover, the as-prepared nanochaperone could work with proteinase to facilitate the degradation of PHF6 aggregates. This bioinspired nanochaperone demonstrated a new way to target tau protein and provided a promising strategy for AD treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Qian, X.; Hamad, B.; Dias-Lalcaca, G. The Alzheimer disease market. Nat. Rev. Drug Discovery 2015, 14, 675–676.

    Article  CAS  PubMed  Google Scholar 

  2. Du, Z.; Li, M.; Ren, J.; Qu, X. Current strategies for modulating aggregation with multifunctional agents. Acc. Chem. Res. 2021, 54, 2172–2184.

    Article  CAS  PubMed  Google Scholar 

  3. Ke, P. C.; Pilkington, E. H.; Sun, Y.; Javed, I.; Kakinen, A.; Peng, G.; Ding, F.; Davis, T. P. Mitigation of amyloidosis with nanomaterials. Adv. Mater. 2020, 32, 1901690.

    Article  CAS  Google Scholar 

  4. Benek, O.; Korabecny, J.; Soukup, O. A Perspective on multi-target drugs for Alzheimer’s disease. Trends Pharmacol. Sci. 2020, 41, 434–445.

    Article  CAS  PubMed  Google Scholar 

  5. Dubois, B.; Feldman, H. H.; Jacova, C.; Hampel, H.; Molinuevo, J. L.; Blennow, K.; Dekosky, S. T.; Gauthier, S.; Selkoe, D.; Bateman, R.; Cappa, S.; Crutch, S.; Engelborghs, S.; Frisoni, G. B.; Fox, N. C.; Galasko, D.; Habert, M. O.; Jicha, G. A.; Nordberg, A.; Pasquier, F.; Rabinovici, G.; Robert, P.; Rowe, C.; Salloway, S.; Sarazin, M.; Epelbaum, S.; de Souza, L. C.; Vellas, B.; Visser, P. J.; Schneider, L.; Stern, Y.; Scheltens, P.; Cummings, J. L. Advancing research diagnostic criteria for Alzheimer’s disease: the IWG-2 criteria. Lancet Neurol. 2014, 13, 614–629.

    Article  PubMed  Google Scholar 

  6. Busche, M. A.; Hyman, B. T. Synergy between amyloid-β and tau in Alzheimer’s disease. Nat. Neurosci. 2020, 23, 1183–1193.

    Article  CAS  PubMed  Google Scholar 

  7. Busche, M. A.; Wegmann, S.; Dujardin, S.; Commins, C.; Schiantarelli, J.; Klickstein, N.; Kamath, T. V.; Carlson, G. A.; Nelken, I.; Hyman, B. T. Tau impairs neural circuits, dominating amyloid-β effects, in Alzheimer models in vivo. Nat. Neurosci. 2019, 22, 57–64.

    Article  CAS  PubMed  Google Scholar 

  8. Doody, R. S.; Raman, R.; Farlow, M.; Iwatsubo, T.; Vellas, B.; Joffe, S.; Kieburtz, K.; He, F.; Sun, X.; Thomas, R. G.; Aisen, P. S.; Alzheimer’s Disease Cooperative Study Steering, C.; Siemers, E.; Sethuraman, G.; Mohs, R.; Semagacestat Study, G. A phase 3 trial of semagacestat for treatment of Alzheimer’s disease. New Engl. J. Med. 2013, 369, 341–350.

    Article  CAS  PubMed  Google Scholar 

  9. Karran, E.; Hardy, J. A Critique of the Drug Discovery and Phase 3 Clinical programs targeting the amyloid hypothesis for Alzheimer disease. Ann. Neurol. 2014, 76, 185–205.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Relkin, N. R.; Thomas, R. G.; Rissman, R. A.; Brewer, J. B.; Rafii, M. S.; van Dyck, C. H.; Jack, C. R.; Sano, M.; Knopman, D. S.; Raman, R.; Szabo, P.; Gelmont, D. M.; Fritsch, S.; Aisen, P. S. A phase 3 trial of IV immunoglobulin for Alzheimer disease. Neurology 2017, 88, 1768–1775.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Giacobini, E.; Gold, G. Alzheimer disease therapy—moving from amyloid-beta to tau. Nat. Rev. Neurol. 2013, 9, 677–686.

    Article  CAS  PubMed  Google Scholar 

  12. Congdon, E. E.; Sigurdsson, E. M. Tau-targeting therapies for Alzheimer disease. Nat. Rev. Neurol. 2018, 14, 399–415.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Chen, L.; Du, Y.; Zhang, K.; Liang, Z.; Li, J.; Yu, H.; Ren, R.; Feng, J.; Jin, Z.; Li, F.; Sun, J.; Zhou, M.; He, Q.; Sun, X.; Zhang, H.; Tian, M.; Ling, D. Tau-targeted multifunctional nanocomposite for combinational therapy of Alzheimer’s disease. ACS Nano 2018, 12, 1321–1338.

    Article  CAS  PubMed  Google Scholar 

  14. Wang, Y.; Mandelkow, E. Tau in physiology and pathology. Nat. Rev. Neurosci. 2016, 17, 5–21.

    Article  PubMed  CAS  Google Scholar 

  15. Li, C.; Gotz, J. Tau-based therapies in neurodegeneration: opportunities and challenges. Nat. Rev. Drug Discovery 2017, 16, 863–883.

    Article  CAS  PubMed  Google Scholar 

  16. Bejanin, A.; Schonhaut, D. R.; La Joie, R.; Kramer, J. H.; Baker, S. L.; Sosa, N.; Ayakta, N.; Cantwell, A.; Janabi, M.; Lauriola, M.; O’Neil, J. P.; Gorno-Tempini, M. L.; Miller, Z. A.; Rosen, H. J.; Miller, B. L.; Jagust, W. J.; Rabinovici, G. D. Tau pathology and neurodegeneration contribute to cognitive impairment in Alzheimer’s disease. Brain 2017, 140, 3286–3300.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Al Mamun, A.; Uddin, M. S.; Mathew, B.; Ashraf, G. M. Toxic tau: structural origins of tau aggregation in Alzheimer’s disease. Neural Regen. Res. 2020, 15, 1417–1420.

    Article  Google Scholar 

  18. Jouanne, M.; Rault, S.; Voisin-Chiret, A. S. Tau protein aggregation in Alzheimer’s disease: An attractive target for the development of novel therapeutic agents. Eur. J. Med. Chem. 2017, 139, 153–167.

    Article  CAS  PubMed  Google Scholar 

  19. Xu, L.; Ding, Y.; Ma, F.; Chen, Y.; Chen, G.; Zhu, L.; Long, J.; Ma, R.; Liu, Y.; Liu, J.; Huang, F.; Shi, L. Engineering a pathological tautargeted nanochaperone for selective and synergetic inhibition of tau pathology in Alzheimer’s disease. Nano Today 2022, 43, 101388.

    Article  CAS  Google Scholar 

  20. Zhu, L.; Xu, L.; Wu, X.; Deng, F.; Ma, R.; Liu, Y.; Huang, F.; Shi, L. Tau-targeted multifunctional nanoinhibitor for Alzheimer’s disease. ACS Appl. Mater. Interfaces 2021, 13, 23328–23338.

    Article  CAS  PubMed  Google Scholar 

  21. Seidler, P. M.; Boyer, D. R.; Rodriguez, J. A.; Sawaya, M. R.; Cascio, D.; Murray, K.; Gonen, T.; Eisenberg, D. S. Structure-based inhibitors of tau aggregation. Nat. Chem. 2018, 10, 170–176.

    Article  CAS  PubMed  Google Scholar 

  22. Wischik, C. M.; Harrington, C. R.; Storey, J. M. D. Tau-aggregation inhibitor therapy for Alzheimer’s disease. Biochem. Pharmacol. 2014, 88, 529–539.

    Article  CAS  PubMed  Google Scholar 

  23. Ryan, P.; Patel, B.; Makwana, V.; Jadhav, H. R.; Kiefel, M.; Davey, A.; Reekie, T. A.; Rudrawar, S.; Kassiou, M. Peptides, peptidomimetics, and carbohydrate-peptide conjugates as amyloidogenic aggregation inhibitors for Alzheimer’s disease. ACS Chem. Neurosci. 2018, 9, 1530–1551.

    CAS  Google Scholar 

  24. Bittar, A.; Bhatt, N.; Kayed, R. Advances and considerations in AD tau-targeted immunotherapy. Neurobiol. Dis. 2020, 134, 104707.

    Article  CAS  PubMed  Google Scholar 

  25. Kim, Y. E.; Hipp, M. S.; Bracher, A.; Hayer-Hartl, M.; Ulrich Hartl, F. Molecular chaperone functions in protein folding and proteostasis. Annu. Rev. Biochem. 2013, 82, 323–355.

    Article  CAS  PubMed  Google Scholar 

  26. Balchin, D.; Hayer-Hartl, M.; Hartl, F. U. In vivo aspects of protein folding and quality control. Science 2016, 353, 7.

    Article  CAS  Google Scholar 

  27. Freilich, R.; Arhar, T.; Abrams, J. L.; Gestwicki, J. E. Protein-protein interactions in the molecular chaperone network. Acc. Chem. Res. 2018, 51, 940–949.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Huang, C.; Rossi, P.; Saio, T.; Kalodimos, C. G. Structural basis for the antifolding activity of a molecular chaperone. Nature 2016, 537, 202–206.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Gorantla, N. V.; Chinnathambi, S. Tau protein squired by molecular chaperones during Alzheimer’s disease. J. Mol. Neurosci. 2018, 66, 356–368.

    Article  CAS  PubMed  Google Scholar 

  30. Pratt, W. B.; Gestwicki, J. E.; Osawa, Y.; Lieberman, A. P. Targeting Hsp90/Hsp70-based protein quality control for treatment of adult onset neurodegenerative diseases. Annu. Rev. Pharmacol. Toxicol. 2015, 55, 353–371.

    Article  CAS  PubMed  Google Scholar 

  31. Mok, S.-A.; Condello, C.; Freilich, R.; Gillies, A.; Arhar, T.; Oroz, J.; Kadavath, H.; Julien, O.; Assimon, V. A.; Rauch, J. N.; Dunyak, B. M.; Lee, J.; Tsai, F. T. F.; Wilson, M. R.; Zweckstetter, M.; Dickey, C. A.; Gestwicki, J. E. Mapping interactions with the chaperone network reveals factors that protect against tau aggregation. Nat. Struct. Mol. Biol. 2018, 25, 384.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Kundel, F.; De, S.; Flagmeier, P.; Horrocks, M. H.; Kjaergaard, M.; Shammas, S. L.; Jackson, S. E.; Dobson, C. M.; Klenerman, D. Hsp70 inhibits the nucleation and elongation of tau and sequesters tau aggregates with high affinity. ACS Chem. Biol. 2018, 13, 636–646.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Baughman, H. E. R.; Pham, T. H. T.; Adams, C. S.; Nath, A.; Klevit, R. E. Release of a disordered domain enhances HspB1 chaperone activity toward tau. Proc. Natl. Acad. Sci. U.S.A. 2020, 117, 2923–2929.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Young, Z. T.; Mok, S. A.; Gestwicki, J. E. Therapeutic strategies for restoring tau homeostasis. Cold Spring Harb. Perspect Med. 2018, 8, a024612.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. Von Bergen, M.; Friedhoff, P.; Biernat, J.; Heberle, J.; Mandelkow, E. M.; Mandelkow, E. Assembly of τ protein into Alzheimer paired helical filaments depends on a local sequence motif (306VQIVYK311) forming β structure. Proc. Natl. Acad. Sci. U.S.A. 2000, 97, 5129–5134.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Ganguly, P.; Do, T. D.; Larini, L.; Lapointe, N. E.; Sercel, A. J.; Shade, M. F.; Feinstein, S. C.; Bowers, M. T.; Shea, J. E. Tau assembly: the dominant role of PHF6 (VQIVYK) in microtubule binding region repeat R3. J. Phys. Chem. B 2015, 119, 4582–4593.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Chemerovski-Glikman, M.; Frenkel-Pinter, M.; Mdah, R.; Abu-Mokh, A.; Gazit, E.; Segal, D. Inhibition of the aggregation and toxicity of the minimal amyloidogenic fragment of tau by its prosubstituted analogues. Chem. Eur. J. 2017, 23, 9618–9624.

    Article  CAS  PubMed  Google Scholar 

  38. Belostozky, A.; Richman, M.; Lisniansky, E.; Tovchygrechko, A.; Chill, J. H.; Rahimipour, S. Inhibition of tau-derived hexapeptide aggregation and toxicity by a self-assembled cyclic d,l-alpha-peptide conformational inhibitor. Chem. Commun. 2018, 54, 5980–5983.

    Article  CAS  Google Scholar 

  39. Fanni, A. M.; Vander Zanden, C. M.; Majewska, P. V.; Majewski, J.; Chi, E. Y. Membrane-mediated fibrillation and toxicity of the tau hexapeptide PHF6. J. Biol. Chem. 2019, 294, 15304–15317.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Sievers, S. A.; Karanicolas, J.; Chang, H. W.; Zhao, A.; Jiang, L.; Zirafi, O.; Stevens, J. T.; Munch, J.; Baker, D.; Eisenberg, D. Structure-based design of non-natural amino-acid inhibitors of amyloid fibril formation. Nature 2011, 475, 96–100.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Zheng, J.; Baghkhanian, A. M.; Nowick, J. S. A hydrophobic surface is essential to inhibit the aggregation of a tau-protein-derived hexapeptide. J. Am. Chem. Soc. 2013, 135, 6846–6852.

    Article  CAS  PubMed  Google Scholar 

  42. Zhang, X. C.; Zhang, X. Y.; Zhong, M. L.; Zhao, P.; Guo, C.; Li, Y.; Wang, T.; Gao, H. L. Selection of a D-enantiomeric peptide specifically binding to PHF6 for inhibiting tau aggregation in transgenic mice. ACS Chem. Neurosci. 2020, 11, 4240–4253.

    Article  CAS  PubMed  Google Scholar 

  43. Huang, F.; Wang, J.; Qu, A.; Shen, L.; Liu, J.; Liu, J.; Zhang, Z.; An, Y.; Shi, L. Maintenance of amyloid β peptide homeostasis by artificial chaperones based on mixed-shell polymeric micelles. Angew. Chem. Int. Ed. 2014, 53, 8985–8990.

    Article  CAS  Google Scholar 

  44. Huang, F.; Qu, A.; Yang, H.; Zhu, L.; Zhou, H.; Liu, J.; Long, J.; Shi, L. Self-assembly molecular chaperone to concurrently inhibit the production and aggregation of amyloid beta peptide associated with Alzheimer’s disease. ACS Macro Lett. 2018, 7, 983–989.

    Article  CAS  PubMed  Google Scholar 

  45. Zhang, X.; Wang, L. Y.; Xu, J. F.; Chen, D. Y.; Shi, L. Q.; Zhou, Y. F.; Shen, Z. H. Polymeric supramolecular systems: design, assembly and functions. Acta Polymerica Sinica (in Chinese) 2019, 50, 973–987.

    CAS  Google Scholar 

  46. Su, L. Z.; Liu, Y.; Li, Y. F.; An, Y. L.; Shi, L. Q. Responsive polymeric nanoparticles for biofilm-infection control. Chinese J. Polym. Sci. 2021, 39, 1376–1391.

    Article  CAS  Google Scholar 

  47. Yang, H.; Li, X.; Zhu, L.; Wu, X.; Zhang, S.; Huang, F.; Feng, X.; Shi, L. Heat shock protein inspired nanochaperones restore amyloid homeostasis for preventative therapy of Alzheimer’s disease. Adv. Sci. 2019, 1901844.

  48. Huang, F.; Shen, L.; Wang, J.; Qu, A.; Yang, H.; Zhang, Z.; An, Y.; Shi, L. Effect of the surface charge of artificial chaperones on the refolding of thermally denatured lysozymes. ACS Appl. Mater. Interfaces 2016, 8, 3669–3678.

    Article  CAS  PubMed  Google Scholar 

  49. Goux, W. J.; Kopplin, L.; Nguyen, A. D.; Leak, K.; Rutkofsky, M.; Shanmuganandam, V. D.; Sharma, D.; Inouye, H.; Kirschner, D. A. The formation of straight and twisted filaments from short tau peptides. J. Biol. Chem. 2004, 279, 26868–26875.

    Article  CAS  PubMed  Google Scholar 

  50. KrishnaKumar, V. G.; Paul, A.; Gazit, E.; Segal, D. Mechanistic insights into remodeled tau-derived PHF6 peptide fibrils by naphthoquinone-tryptophan hybrids. Sci. Rep. 2018, 8, 71.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  51. Garcia-Chame, M. A.; Gutierrez-Sanz, O.; Ercan-Herbst, E.; Haustein, N.; Filipiak, M. S.; Ehrnhoefer, D. E.; Tarasov, A. A transistor-based label-free immunosensor for rapid detection of tau protein. Biosens. Bioelectron. 2020, 159, 112129.

    Article  CAS  PubMed  Google Scholar 

  52. Cho, N.-J.; Frank, C. W.; Kasemo, B.; Hook, F. Quartz crystal microbalance with dissipation monitoring of supported lipid bilayers on various substrates. Nat. Protoc. 2010, 5, 1096–1106.

    Article  CAS  PubMed  Google Scholar 

  53. Wang, J.; Yin, T.; Huang, F.; Song, Y.; An, Y.; Zhang, Z.; Shi, L. Artificial chaperones based on mixed shell polymeric micelles: insight into the mechanism of the interaction of the chaperone with substrate proteins using forster resonance energy transfer. ACS Appl. Mater. Interfaces 2015, 7, 10238–10249.

    Article  CAS  PubMed  Google Scholar 

  54. Li, C.; Liu, X.; Zhang, Y.; Lv, J.; Huang, F.; Wu, G.; Liu, Y.; Ma, R.; An, Y.; Shi, L. Nanochaperones mediated delivery of insulin. Nano Lett. 2020, 20, 1755–1765.

    Article  CAS  PubMed  Google Scholar 

  55. Li, X.; Cai, X.; Zhang, Z.; Ding, Y.; Ma, R.; Huang, F.; Liu, Y.; Liu, J.; Shi, L. Mimetic heat shock protein mediated immune process to enhance cancer immunotherapy. Nano Lett. 2020, 20, 4454–4463.

    Article  CAS  PubMed  Google Scholar 

  56. Liu, Y.; Du, J. J.; Yan, M.; Lau, M. Y.; Hu, J.; Han, H.; Yang, O. O.; Liang, S.; Wei, W.; Wang, H.; Li, J. M.; Zhu, X. Y.; Shi, L. Q.; Chen, W.; Ji, C.; Lu, Y. F. Biomimetic enzyme nanocomplexes and their use as antidotes and preventive measures for alcohol intoxication. Nat. Nanotechnol. 2013, 8, 187–192.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Selvin, P. R. The renaissance of fluorescence resonance energy transfer. Nat. Struct. Biol. 2000, 7, 730–734.

    Article  CAS  PubMed  Google Scholar 

  58. Goedert, M. The ordered assembly of tau is the gain-of-toxic function that causes human tauopathies. Alzheimers Dement. 2016, 12, 1040–1050.

    Article  PubMed  Google Scholar 

  59. Ghag, G.; Bhatt, N.; Cantu, D. V.; Guerrero-Munoz, M. J.; Ellsworth, A.; Sengupta, U.; Kayed, R. Soluble tau aggregates, not large fibrils, are the toxic species that display seeding and cross-seeding behavior. Protein Sci. 2018, 27, 1901–1909.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Frenkel-Pinter, M.; Richman, M.; Belostozky, A.; Abu-Mokh, A.; Gazit, E.; Rahimipour, S.; Segal, D. Selective inhibition of aggregation and toxicity of a tau-derived peptide using its glycosylated analogues. Chem. Eur. J. 2016, 22, 5945–5952.

    Article  CAS  PubMed  Google Scholar 

  61. Chesser, A. S.; Pritchard, S. M.; Johnson, G. V. W. Tau clearance mechanisms and their possible role in the pathogenesis of Alzheimer disease. Front. Neurol. 2013, 4, 122.

    Article  PubMed  PubMed Central  Google Scholar 

  62. Whyte, L. S.; Lau, A. A.; Hemsley, K. M.; Hopwood, J. J.; Sargeant, T. J. Endo-lysosomal and autophagic dysfunction: a driving factor in Alzheimer’s disease. J. Neurochem. 2017, 140, 703–717.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the National Natural Science Foundation of China (Nos. 51933006 and 52073306), Young Elite Scientists Sponsorship Program by Tianjin (No. TJSQNTJ-2020-18), the Nonprofit Central Research Institute Fund of Chinese Academy of Medical Sciences (No. 2019-RC-HL-014) and Wenzhou Key Laboratory of Biomaterials and Engineering (No. WIUCASSWCL21004).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Fan Huang or Lin-Qi Shi.

Additional information

Notes

The authors declare no competing financial interest.

Electronic Supplementary Information (ESI)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, L., Zhang, MQ., Jing, HR. et al. Bioinspired Self-assembly Nanochaperone Inhibits Tau-Derived PHF6 Peptide Aggregation in Alzheimer’s Disease. Chin J Polym Sci 40, 1062–1070 (2022). https://doi.org/10.1007/s10118-022-2799-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10118-022-2799-9

Keywords

Navigation