Skip to main content
Log in

Radio frequency transistors based on ultra-high purity semiconducting carbon nanotubes with superior extrinsic maximum oscillation frequency

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

In this paper, we report polyfluorene-separated ultra-high purity semiconducting carbon nanotube radio frequency transistors with a self-aligned T-shape gate structure. Because of the ultra-high semiconducting tube purity and self-aligned T-shape gate structure, these transistors showed an excellent direct current and radio frequency performance. In regard to the direct current characteristics, these transistors showed a transconductance up to 40 μS/μm and an excellent current saturation behavior with an output resistance greater than 200 kΩ·μm. In terms of the radio frequency characteristics, an extrinsic maximum oscillation frequency (f max) of 19 GHz was achieved, which is a record among all kinds of carbon nanotube transistors, and an extrinsic current gain cut-off frequency (f T) of 22 GHz was achieved, which is the highest among transistors based on carbon nanotube networks. Our results take the radio frequency performance of carbon nanotube transistors to a new level and can further accelerate the application of carbon nanotubes for future radio frequency electronics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Dürkop, T.; Getty, S. A.; Cobas, E.; Fuhrer, M. S. Extraordinary mobility in semiconducting carbon nanotubes. Nano Lett. 2004, 4, 35–39.

    Article  Google Scholar 

  2. Zhou, X. J.; Park, J. Y.; Huang, S. M.; Liu, J.; McEuen, P. L. Band structure, phonon scattering, and the performance limit of single-walled carbon nanotube transistors. Phys. Rev. Lett. 2005, 95, 146805.

    Article  Google Scholar 

  3. Rutherglen, C.; Jain, D.; Burke, P. Nanotube electronics for radiofrequency applications. Nat. Nanotechnol. 2009, 4, 811–819.

    Article  Google Scholar 

  4. Javey, A.; Wang, Q.; Ural, A.; Li, Y. M.; Dai, H. J. Carbon nanotube transistor arrays for multistage complementary logic and ring oscillators. Nano Lett. 2002, 2, 929–932.

    Article  Google Scholar 

  5. Derycke, V.; Martel, R.; Appenzeller, J.; Avouris, P. Carbon nanotube inter- and intramolecular logic gates. Nano Lett. 2001, 1, 453–456.

    Article  Google Scholar 

  6. Liu, X. L.; Lee, C.; Zhou, C. W.; Han, J. Carbon nanotube field-effect inverters. Appl. Phys. Lett. 2001, 79, 3329–3331.

    Article  Google Scholar 

  7. Ryu, K.; Badmaev, A.; Wang, C.; Lin, A.; Patil, N.; Gomez, L.; Kumar, A.; Mitra, S.; Wong, H. S. P.; Zhou, C. W. CMOS-analogous wafer-scale nanotube-on-insulator approach for submicrometer devices and integrated circuits using aligned nanotubes. Nano Lett. 2009, 9, 189–197.

    Article  Google Scholar 

  8. Shulaker, M. M.; Hills, G.; Patil, N.; Wei, H.; Chen, H. Y.; Wong, H. S. P.; Mitra, S. Carbon nanotube computer. Nature 2013, 501, 526–530.

    Article  Google Scholar 

  9. Cao, Q.; Kim, H. S.; Pimparkar, N.; Kulkarni, J. P.; Wang, C. J.; Shim, M.; Roy, K.; Alam, M. A.; Rogers, J. A. Medium-scale carbon nanotube thin-film integrated circuits on flexible plastic substrates. Nature 2008, 454, 495–500.

    Article  Google Scholar 

  10. Zhang, J. L; Fu, Y.; Wang, C.; Chen, P. C.; Liu, Z. W.; Wei, W.; Wu, C.; Thompson, M. E.; Zhou, C. W. Separated carbon nanotube macroelectronics for active matrix organic light-emitting diode displays. Nano Lett. 2011, 11, 4852–4858.

    Article  Google Scholar 

  11. Cao, X.; Chen, H. T.; Gu, X. F.; Liu, B.; Wang, W. L.; Cao, Y.; Wu, F. Q.; Zhou, C. W. Screen printing as a scalable and low-cost approach for rigid and flexible thin-film transistors using separated carbon nanotubes. ACS Nano 2014, 8, 12769–12776.

    Article  Google Scholar 

  12. Chen, H. T.; Cao, Y.; Zhang, J. L.; Zhou, C. W. Large-scale complementary macroelectronics using hybrid integration of carbon nanotubes and IGZO thin-film transistors. Nat. Commun. 2014, 5, 4097.

    Google Scholar 

  13. Zhang, J. L.; Gui, H.; Liu, B. L.; Liu, J.; Zhou, C. W. Comparative study of gel-based separated arcdischarge, HiPCO, and CoMoCAT carbon nanotubes for macroelectronic applications. Nano Res. 2013, 6, 906–920.

    Article  Google Scholar 

  14. Takahashi, T.; Yu, Z. B.; Chen, K.; Kiriya, D.; Wang, C.; Takei, K.; Shiraki, H.; Chen, T.; Ma, B. W.; Javey, A. Carbon nanotube active-matrix backplanes for mechanically flexible visible light and X-ray imagers. Nano Lett. 2013, 13, 5425–5430.

    Article  Google Scholar 

  15. Wang, C.; Hwang, D.; Yu, Z. B.; Takei, K.; Park, J.; Chen, T.; Ma, B. W.; Javey, A. User-interactive electronic skin for instantaneous pressure visualization. Nat. Mater. 2013, 12, 899–904.

    Article  Google Scholar 

  16. Vuttipittayamongkol, P.; Wu, F. Q.; Chen, H. T.; Cao, X.; Liu, B. L.; Zhou, C. W. Threshold voltage tuning and printed complementary transistors and inverters based on thin films of carbon nanotubes and indium zinc oxide. Nano Res. 2015, 8, 1159–1168.

    Article  Google Scholar 

  17. Li, S. D.; Yu, Z.; Yen, S. F.; Tang, W. C.; Burke, P. J. Carbon nanotube transistor operation at 2.6 GHz. Nano Lett. 2004, 4, 753–756.

    Article  Google Scholar 

  18. Le Louarn, A.; Kapche, F.; Bethoux, J. M.; Happy, H.; Dambrine, G.; Derycke, V.; Chenevier, P.; Izard, N.; Goffman, M. F.; Bourgoin, J. P. Intrinsic current gain cutoff frequency of 30 GHz with carbon nanotube transistors. Appl. Phys. Lett. 2007, 90, 233108.

    Article  Google Scholar 

  19. Nougaret, L.; Happy, H.; Dambrine, G.; Derycke, V.; Bourgoin, J. P.; Green, A. A.; Hersam, M. C. 80 GHz field-effect transistors produced using high purity semiconducting singlewalled carbon nanotubes. Appl. Phys. Lett. 2009, 94, 243505.

    Article  Google Scholar 

  20. Wang, C.; Badmaev, A.; Jooyaie, A.; Bao, M. Q.; Wang, K. L.; Galatsis, K.; Zhou, C. W. Radio frequency and linearity performance of transistors using high-purity semiconducting carbon nanotubes. ACS Nano 2011, 5, 4169–4176.

    Article  Google Scholar 

  21. Che, Y. C.; Badmaev, A.; Jooyaie, A.; Wu, T.; Zhang, J. L.; Wang, C.; Galatsis, K.; Enaya, H. A.; Zhou, C. W. Self-aligned T-gate high-purity semiconducting carbon nanotube RF transistors operated in quasi-ballistic transport and quantum capacitance regime. ACS Nano 2012, 6, 6936–6943.

    Article  Google Scholar 

  22. Ding, L.; Wang, Z. X.; Pei, T.; Zhang, Z. Y.; Wang, S.; Xu, H. L.; Peng, F.; Li, Y.; Peng, L. M. Self-aligned U-gate carbon nanotube field-effect transistor with extremely small parasitic capacitance and drain-induced barrier lowering. ACS Nano 2011, 5, 2512–2519.

    Article  Google Scholar 

  23. Che, Y. C.; Lin, Y. C.; Kim, P.; Zhou, C. W. T-gate aligned nanotube radio frequency transistors and circuits with superior performance. ACS Nano 2013, 7, 4343–4350.

    Article  Google Scholar 

  24. Steiner, M.; Engel, M.; Lin, Y. M.; Wu, Y. Q.; Jenkins, K.; Farmer, D. B.; Humes, J. J.; Yoder, N. L.; Seo, J. W. T.; Green, A. A. et al. High-frequency performance of scaled carbon nanotube array field-effect transistors. Appl. Phys. Lett. 2012, 101, 053123.

    Article  Google Scholar 

  25. Kocabas, C.; Dunham, S.; Cao, Q.; Cimino, K.; Ho, X. M.; Kim, H. S.; Dawson, D.; Payne, J.; Stuenkel, M.; Zhang, H. et al. High-frequency performance of submicrometer transistors that use aligned arrays of single-walled carbon nanotubes. Nano Lett. 2009, 9, 1937–1943.

    Article  Google Scholar 

  26. Wang, Z. X.; Liang, S. B.; Zhang, Z. Y.; Liu, H. G.; Zhong, H.; Ye, L. H.; Wang, S.; Zhou, W. W.; Liu, J.; Chen, Y. B. et al. Scalable fabrication of ambipolar transistors and radio-frequency circuits using aligned carbon nanotube arrays. Adv. Mater. 2014, 26, 645–652.

    Article  Google Scholar 

  27. Chaste, J.; Lechner, L.; Morfin, P.; Fè ve, G.; Kontos, T.; Berroir, J. M.; Glattli, D. C.; Happy, H.; Hakonen, P.; Placais, B. Single carbon nanotube transistor at GHz frequency. Nano Lett. 2008, 8, 525–528.

    Article  Google Scholar 

  28. Kocabas, C.; Hur, S. H.; Gaur, A.; Meitl, M. A.; Shim, M.; Rogers, J. A. Guided growth of large-scale, horizontally aligned arrays of single-walled carbon nanotubes and their use in thin-film transistors. Small 2005, 1, 1110–1116.

    Article  Google Scholar 

  29. Che, Y. C.; Wang, C.; Liu, J.; Liu, B. L.; Lin, X.; Parker, J.; Beasley, C.; Wong, H. S.; Zhou, C. W. Selective synthesis and device applications of semiconducting single-walled carbon nanotubes using isopropyl alcohol as feedstock. ACS Nano 2012, 6, 7454–7462.

    Article  Google Scholar 

  30. Li, J. H.; Liu, K. H.; Liang, S. B.; Zhou, W. W.; Pierce, M.; Wang, F.; Peng, L. M.; Liu, J. Growth of high-densityaligned and semiconducting-enriched single-walled carbon nanotubes: Decoupling the conflict between density and selectivity. ACS Nano 2014, 8, 554–562.

    Article  Google Scholar 

  31. Yeh, C. H.; Lain, Y. W.; Chiu, Y. C.; Liao, C. H.; Moyano, D. R.; Hsu, S. S. H.; Chiu, P. W. Gigahertz flexible graphene transistors for microwave integrated circuits. ACS Nano 2014, 8, 7663–7670.

    Article  Google Scholar 

  32. Badmaev, A.; Che, Y. C.; Li, Z.; Wang, C.; Zhou, C. W. Self-aligned fabrication of graphene RF transistors with T-shaped gate. ACS Nano 2012, 6, 3371–3376.

    Article  Google Scholar 

  33. Chen, J. D.; Lin, Z. M. 2.4 GHz high IIP3 and low-noise down-conversion mixer. In Proceedings of the IEEE Asia Pacific Conference on Circuits and Systems, Singapore, 2006, pp 37–40.

    Google Scholar 

  34. Wan, Q. Z.; Wang, C. H.; Ma, M. L. A novel 2.4 GHz CMOS up-conversion current-mode mixer. Radioengineering 2009, 18, 532–536.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chongwu Zhou.

Additional information

These authors contributed equally to this work.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cao, Y., Che, Y., Gui, H. et al. Radio frequency transistors based on ultra-high purity semiconducting carbon nanotubes with superior extrinsic maximum oscillation frequency. Nano Res. 9, 363–371 (2016). https://doi.org/10.1007/s12274-015-0915-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-015-0915-7

Keywords

Navigation