Skip to main content
Log in

Threshold voltage tuning and printed complementary transistors and inverters based on thin films of carbon nanotubes and indium zinc oxide

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Carbon nanotubes (CNTs) have emerged as an important material for printed macroelectronics. However, achieving printed complementary macroelectronics solely based on CNTs is difficult because it is still challenging to make reliable n-type CNT transistors. In this study, we report threshold voltage (V th) tuning and printing of complementary transistors and inverters composed of thin films of CNTs and indium zinc oxide (IZO) as p-type and n-type transistors, respectively. We have optimized the V th of p-type transistors by comparing Ti/Au and Ti/Pd as source/drain electrodes, and observed that CNT transistors with Ti/Au electrodes exhibited enhancement mode operation (V th < 0). In addition, the optimized In:Zn ratio offers good n-type transistors with high on-state current (I on) and enhancement mode operation (V th > 0). For example, an In:Zn ratio of 2:1 yielded an enhancement mode n-type transistor with V th ∼ 1 V and I on of 5.2 μA. Furthermore, by printing a CNT thin film and an IZO thin film on the same substrate, we have fabricated a complementary inverter with an output swing of 99.6% of the supply voltage and a voltage gain of 16.9. This work shows the promise of the hybrid integration of p-type CNT and n-type IZO for complementary transistors and circuits.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Javey, A.; Guo, J.; Wang, Q.; Lundstrom, M.; Dai, H. J. Ballistic carbon nanotube field-effect transistors. Nature 2003, 424, 654–657.

    Article  Google Scholar 

  2. Tans, S. J.; Verschueren, A. R. M.; Dekker, C. Room-temperature transistor based on a single carbon nanotube. Nature 1998, 393, 49–52.

    Article  Google Scholar 

  3. Wang, C.; Zhang, J. L.; Ryu, K.; Badmaev, A.; Arco, L. G. D.; Zhou, C. W. Wafer-scale fabrication of separated carbon nanotube thin-film transistors for display applications. Nano Lett. 2009, 9, 4285–4291.

    Article  Google Scholar 

  4. Chen, P.; Fu, Y.; Aminirad, R.; Wang, C.; Zhang, J. L.; Wang, K.; Galatsis, K.; Zhou, C. W. Fully printed separated carbon nanotube thin film transistor circuits and its application in organic light emitting diode control. Nano Lett. 2011, 11, 5301–5308.

    Article  Google Scholar 

  5. Saito, R.; Dresselhaus, G.; Dresselhaus, M. S. Physical Properties of Carbon Nanotubes; Imperial College Press: London, 1998.

    Book  Google Scholar 

  6. Liu, B. L.; Wang, C.; Liu, J.; Che, Y. C.; Zhou, C. W. Aligned carbon nanotubes: From controlled synthesis to electronic applications. Nanoscale 2013, 5, 9483–9502.

    Article  Google Scholar 

  7. Balasubramanian, K.; Sordan, R.; Burghard, M.; Kern, K. A selective electrochemical approach to carbon nanotube field-effect transistors. Nano Lett. 2004, 4, 827–830.

    Article  Google Scholar 

  8. Collins, P. G.; Arnold, M. S.; Avouris, P. Engineering carbon nanotubes and nanotube circuits using electrical breakdown. Science 2001, 292, 706–709.

    Article  Google Scholar 

  9. Zhang, G. Y.; Qi, P. F.; Wang, X. R.; Lu, Y. R.; Li, X. L.; Tu, R.; Bangsaruntip, S.; Mann, D.; Zhang, L.; Dai, H. J. Selective etching of metallic carbon nanotubes by gas-phase reaction. Science 2006, 314, 974–977.

    Article  Google Scholar 

  10. Li, S. S.; Liu, C.; Hou, P. X.; Sun, D. M.; Cheng, H. M. Enrichment of semiconducting single-walled carbon nanotubes by carbothermic reaction for use in all-nanotube field effect transistors. ACS Nano 2012, 6, 9657–9661.

    Article  Google Scholar 

  11. An, L; Fu, Q; Lu, C. G.; Liu, J. A simple chemical route to selectively eliminate metallic carbon nanotubes in nanotube network devices. J. Am. Chem. Soc. 2004, 126, 10520–10521.

    Article  Google Scholar 

  12. Vaillancourt, J.; Zhang, H. Y.; Vasinajindakaw, P.; Xia, H. T.; Lu, X. J.; Han, X. L.; Janzen, D. C.; Shih, W. S.; Jones, C. S.; Stroder, M. et al. All ink-jet-printed carbon nanotube thin-film transistor on a polyimide substrate with an ultrahigh operating frequency of over 5 GHz. Appl. Phys. Lett. 2008, 93, 243301.

    Article  Google Scholar 

  13. Jo, J. W.; Jung, J. W.; Lee, J. U.; Jo, W. H. Fabrication of highly conductive and transparent thin films from single-walled carbon nanotubes using a new non-ionic surfactant via spin coating. ACS Nano 2010, 4, 5382–5388.

    Article  Google Scholar 

  14. Li, X. K.; Guard, L. M.; Jiang, J.; Sakimoto, K.; Huang, J. S.; Wu, J. G.; Li, J. Y.; Yu, L. Q.; Pokhrel, R.; Brudvig, G. W. et al. Controlled doping of carbon nanotubes with metallocenes for application in hybrid carbon nanotube/Si solar cells. Nano Lett. 2014, 14, 3388–3394.

    Article  Google Scholar 

  15. Zhang, J. L.; Wang, C.; Zhou, C. W. Rigid/flexible transparent electronics based on separated carbon nanotube thin-film transistors and their application in display electronics. ACS Nano 2012, 6, 7412–7419.

    Article  Google Scholar 

  16. Wang, C.; Zhang, J. L.; Zhou, C. W. Macroelectronic integrated circuits using high-performance separated carbon nanotube thin-film transistors. ACS Nano 2010, 4, 7123–7132.

    Article  Google Scholar 

  17. Lee, C. W.; Weng, C. H.; Wei, L.; Chen, Y.; Chan-Park, M. B.; Tsai, C. H.; Leou, K. C.; Poa, C. H. P.; Wang, J. L.; Li, L. J. Toward high-performance solution-processed carbon nanotube network transistors by removing nanotube bundles. J. Phys. Chem.C 2008, 112, 12089–12091.

    Article  Google Scholar 

  18. Martel, R.; Schmidt, T.; Shea, H. R.; Hertel, T.; Avouris, P. Single- and multi-wall carbon nanotube field-effect transistors. Appl. Phys. Lett. 1998, 73, 2447–2449.

    Article  Google Scholar 

  19. Derycke, V.; Martel, R.; Appenzeller, J.; Avouris, P. Controlling doping and carrier injection in carbon nanotube transistors. Appl. Phys. Lett. 2002, 80, 2773–2775.

    Article  Google Scholar 

  20. Fortunato, E.; Barquinha, P.; Martins, R. Oxide semiconductor thin-film transistors: A review of recent advances. Adv. Mater. 2012, 24, 2945–2986.

    Article  Google Scholar 

  21. Yaglioglu, B; Yeom, H. Y.; Beresford, R.; Paine, D. C. High-mobility amorphous In2O3-10 wt.% ZnO thin film transistors. Appl. Phys. Lett. 2006, 89, 062103.

    Article  Google Scholar 

  22. Liu, X. Q.; Wang, C. L.; Cai, B.; Xiao, X. H.; Guo, S. S.; Fan, Z. Y.; Li, J. C.; Duan, X. F.; Liao, L. Rational design of amorphous indium zinc oxide/carbon nanotube hybrid film for unique performance transistors. Nano Lett. 2012, 12, 3596–3601.

    Article  Google Scholar 

  23. Choi, C. G.; Seo, S. J.; Bae, B. S. Solution-processed indium-zinc oxide transparent thin-film transistors. Electrochem. Solid-State Lett. 2008, 11, H7–H9.

    Article  Google Scholar 

  24. Lee, S.; Kim, J.; Choi, J.; Park, H.; Ha, J.; Kim, Y.; Rogers, J. A.; Paik, U. Patterned oxide semiconductor by electrohydrodynamic jet printing for transparent thin film transistors. Appl. Phys. Lett. 2012, 100, 102108.

    Article  Google Scholar 

  25. Lee, D. H.; Chang, Y. J.; Herman, G. S.; Chang, C. H. A general route to printable high-mobility transparent amorphous oxide semiconductors. Adv. Mater. 2007, 19, 843–847.

    Article  Google Scholar 

  26. Ong, B. S.; Li, C. S.; Li, Y. N.; Wu, Y. L.; Loutfy, R. Stable, solution-processed, high-mobility ZnO thin-film transistors. J. Am. Chem. Soc. 2007, 129, 2750–2751.

    Article  Google Scholar 

  27. Fortunato, E.; Barquinha, P.; Pimentel, A.; Gonçalves, A.; Marques, A.; Pereira, L.; Martins, R. Recent advances in ZnO transparent thin film transistors. Thin Solid Films 2005, 487, 205–211.

    Article  Google Scholar 

  28. Lim, J. H.; Shim, J. H.; Choi, J. H.; Joo, J.; Park, K.; Jeon, H.; Moon, M. R.; Jung, D.; Kim, H.; Lee, H. J. Solution-processed InGaZnO-based thin film transistors for printed electronics applications. Appl. Phys. Lett. 2009, 95, 012108.

    Article  Google Scholar 

  29. Zhang, J. L.; Wang, C.; Fu, Y.; Che, Y. C.; Zhou, C. W. Air-stable conversion of separated carbon nanotube thin-film transistors from p-type to n-type using atomic layer deposition of high-κ oxide and its application in CMOS logic circuits. ACS Nano 2011, 5, 3284–3292.

    Article  Google Scholar 

  30. Zhang, Z. Y.; Wang, S.; Wang, Z. X.; Ding, L.; Pei, T.; Hu, Z. D.; Liang, X. L.; Chen, Q.; Li, Y.; Peng, L. M. Almost perfectly symmetric SWCNT-based CMOS devices and scaling. ACS Nano 2009, 3, 3781–3787.

    Article  Google Scholar 

  31. Kim, B.; Jang, S.; Geier, M. L.; Prabhumirashi, P. L.; Hersam, M. C.; Dodabalapur, A. High-speed, inkjet-printed carbon nanotube/zinc tin oxide hybrid complementary ring oscillators. Nano Lett. 2014, 14, 3683–3687.

    Article  Google Scholar 

  32. Chen, Z. H.; Appenzeller, J.; Knoch, J.; Lin, Y. M.; Avouris, P. The role of metal-nanotube contact in the performance of carbon nanotube field-effect transistors. Nano Lett. 2005, 5, 1497–1502.

    Article  Google Scholar 

  33. Hosono, H. Ionic amorphous oxide semiconductors: Material design, carrier transport, and device application. J. Non-Cryst. Solids 2006, 352, 851–858.

    Article  Google Scholar 

  34. Ha, M. J.; Xia, Y.; Green, A. A.; Zhang, W.; Renn, M. J.; Kim, C. H.; Hersam, M. C.; Frisbie, C. D. Printed, sub-3V digital circuits on plastic from aqueous carbon nanotube inks. ACS Nano 2010, 4, 4388–4395.

    Article  Google Scholar 

  35. Noh, J.; Jung, M.; Jung, K.; Lee, G.; Kim, J.; Lim, S.; Kim, D.; Choi, Y.; Kim, Y.; Subramanian, V. et al. Fully gravure-printed D flip-flop on plastic foils using single-walled carbon-nanotube-based TFTs. IEEE Electron Device Lett. 2011, 32, 638–640.

    Article  Google Scholar 

  36. Kim, B.; Jang, S.; Geier, M. L.; Prabhumirashi, P. L.; Hersam, M. C.; Dodabalapur, A. Inkjet printed ambipolar transistors and inverters based on carbon nanotube/zinc tin oxide heterostructures. Appl. Phys. Lett. 2014, 104, 062101.

    Article  Google Scholar 

  37. Zhang, Z. Y.; Liang, X. L.; Wang, S.; Yao, K.; Hu, Y. F.; Zhu, Y. Z.; Chen, Q.; Zhou, W. W.; Li, Y.; Yao, Y. G. et al. Doping-free fabrication of carbon nanotube based ballistic CMOS devices and circuits. Nano Lett. 2007, 7, 3603–3607.

    Article  Google Scholar 

  38. Avouris, P. Carbon Nanotube Electronics. Chem. Phys. 2002, 281, 429–445.

    Article  Google Scholar 

  39. Javey, A.; Wang, Q.; Ural, A.; Li, Y. M.; Dai, H. J. Carbon nanotube transistor arrays for multistage complementary logic and ring oscillators. Nano Lett. 2002, 2, 929–932.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chongwu Zhou.

Additional information

These authors contributed equally to this work.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vuttipittayamongkol, P., Wu, F., Chen, H. et al. Threshold voltage tuning and printed complementary transistors and inverters based on thin films of carbon nanotubes and indium zinc oxide. Nano Res. 8, 1159–1168 (2015). https://doi.org/10.1007/s12274-014-0596-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-014-0596-7

Keywords

Navigation