Skip to main content
Log in

Highly uniform carbon nanotube nanomesh network transistors

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

A new type of single-walled carbon nanotube (SWNT) thin-film transistor (TFT) structure with a nanomesh network channel has been fabricated from a preseparated semiconducting nanotube solution and simultaneously achieved both high uniformity and a high on/off ratio for application in large-scale integrated circuits. The nanomesh structure is prepared on a high-density SWNT network channel and enables a high on/off ratio while maintaining the excellent uniformity of the electrical properties of the SWNT TFTs. These effects are attributed to the effective elimination of metallic paths across the source/drain electrodes by forming the nanomesh structure in the high-density SWNT network channel. Therefore, our approach can serve as a critical foundation for future nanotube-based thinfilm display electronics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Durkop, T.; Getty, S. A.; Cobas, E.; Fuhrer, M. S. Extraordinary mobility in semiconducting carbon nanotubes. Nano Lett. 2004, 4, 35–39.

    Article  Google Scholar 

  2. Snow, E. S.; Novak, J. P.; Campbell, P. M.; Park, D. Random networks of carbon nanotubes as an electronic material. Appl. Phys. Lett. 2003, 82, 2145–2147.

    Article  Google Scholar 

  3. Zhou, Y.; Gaur, A.; Hur, S.-H.; Kocabas, C.; Meitl, M. A.; Shim, M.; Rogers, J. A. p-channel, n-channel thin film transistors and p-n diodes based on single wall carbon nanotube networks. Nano Lett. 2004, 4, 2031–2035.

    Article  Google Scholar 

  4. Kocabas, C.; Meitl, M. A.; Gaur, A.; Shim, M.; Rogers, J. A. Aligned arrays of single-walled carbon nanotubes generated from random networks by orientationally selective laser ablation. Nano Lett. 2004, 4, 2421–2426.

    Article  Google Scholar 

  5. Hu, L.; Hecht, D. S.; Grüner, G. Percolation in transparent and conducting carbon nanotube networks. Nano Lett. 2004, 4, 2513–2517.

    Article  Google Scholar 

  6. Kumar, S.; Murthy, J. Y.; Alam, M. A. Percolating conduction in finite nanotube networks. Phys. Rev. Lett. 2005, 95, 066802.

    Article  Google Scholar 

  7. Cao, Q.; Han, S.-J.; Tulevski, G. S.; Zhu, Y.; Lu, D. D.; Haensch, W. Arrays of single-walled carbon nanotubes with full surface coverage for high-performance electronics. Nat. Nanotechnol. 2013, 8, 180–186.

    Article  Google Scholar 

  8. Javey, A.; Guo, J.; Wang, Q.; Lundstrom, M.; Dai, H. Ballistic carbon nanotube field-effect transistors. Nature 2003, 424, 654–657.

    Article  Google Scholar 

  9. Mann, D.; Javey, A.; Kong, J.; Wang, Q.; Dai, H. Ballistic transport in metallic nanotubes with reliable Pd ohmic contacts. Nano Lett. 2003, 3, 1541–1544.

    Article  Google Scholar 

  10. Javey, A.; Guo, J.; Farmer, D. B.; Wang, Q.; Wang, D.; Gordon, R. G.; Lundstrom, M.; Dai, H. Carbon nanotube field-effect transistors with integrated ohmic contacts and high-k gate dielectrics. Nano Lett., 2004, 4, 447–450.

    Article  Google Scholar 

  11. Javey, A.; Guo, J.; Farmer, D. B.; Wang, Q.; Yenilmez, E.; Gordon, R. G.; Lundstrom, M.; Dai, H. Self-aligned ballistic molecular transistors and electrically parallel nanotube Arrays. Nano Lett. 2004, 4, 1319–1322.

    Article  Google Scholar 

  12. Javey, A.; Kim, H.; Brink, M.; Wang, Q.; Ural, A.; Guo, J.; Mcintyre, P.; McEuen, P.; Lundstrom, M.; Dai, H. High-k dielectrics for advanced carbon-nanotube transistors and logic gates. Nat. Mater. 2002, 1, 241–246.

    Article  Google Scholar 

  13. Bachtold, A.; Hadley, P.; Nakanishi, T.; Dekker, C. Logic circuits with carbon nanotube transistors. Science 2001, 294, 1317–1320.

    Article  Google Scholar 

  14. Derycke, V.; Martel, R.; Appenzeller, J.; Avouris, Ph. Carbon nanotube inter- and intramolecular logic gates. Nano Lett. 2001, 1, 453–456.

    Article  Google Scholar 

  15. Javey, A.; Wang, Q.; Ural, A.; Li, Y.; Dai, H. Carbon nanotube transistor arrays for multistage complementary logic and ring oscillators. Nano Lett. 2002, 2, 929–932.

    Article  Google Scholar 

  16. Chen, Z. H.; Appenzeller, J.; Lin, Y. M.; Sippel-Oakley, J.; Rinzler, A. G.; Tang, J. Y.; Wind, S. J.; Solomon, P. M.; Avouris, P. An Integrated logic circuit assembled on a single carbon nanotube. Science 2006, 311, 1735.

    Article  Google Scholar 

  17. Wang, C.; Zhang, J.; Zhou, C. Macroelectronic integrated circuits using high-performance separated carbon nanotube thin-film transistors. ACS Nano 2010, 4, 7123–7132.

    Article  Google Scholar 

  18. Tans, S.; Verschueren, A.; Dekker, C. Room-temperature transistor based on a single carbon nanotube. Nature 1998, 393, 49–52.

    Article  Google Scholar 

  19. Zhang, J.; Wang, C.; Zhou, C. Rigid/flexible transparent electronics based on separated carbon nanotube thin-film transistors and their application in display electronics. ACS Nano 2012, 6, 7412–7419.

    Article  Google Scholar 

  20. Cao, Q.; Kim, H.; Pimparkar, N.; Kulkarni, J. P.; Wang, C.; Shim, M.; Roy, K.; Alam, M. A.; Rogers, J. A. Mediumscale carbon nanotube thin-film integrated circuits on flexible plastic substrates. Nature 2008, 454, 495–500.

    Article  Google Scholar 

  21. Takahashi, T.; Takei, K.; Gillies, A. G.; Fearing, R. S.; Javey, A. Carbon nanotube active-matrix backplanes for conformal electronics and sensors. Nano Lett. 2011, 11, 5408–5413.

    Article  Google Scholar 

  22. Wang, C.; Chien, J. C.; Takei, K.; Takahashi, T.; Nah, J.; Niknejad, A. M.; Javey, A. Extremely bendable, high-performance integrated circuits using semiconducting carbon nanotube networks for digital, analog, and radio-frequency applications. Nano Lett. 2012, 12, 1527–1533.

    Article  Google Scholar 

  23. Cao, Q.; Rogers, J. A. Random networks and aligned arrays of single-walled carbon nanotubes for electronic device applications. Nano Res. 2008, 1, 259–272.

    Article  Google Scholar 

  24. Cao, Q.; Rogers, J. A. Ultrathin films of single-walled carbon nanotubes for electronics and sensors: A review of fundamental and applied aspects. Adv. Mater. 2008, 21, 29–53.

    Article  Google Scholar 

  25. Sangwan, V. K.; Ortiz, R. P.; Alaboson, J. M. P.; Emery, J. D.; Bedzyk, M. J.; Lauhon, L. J.; Marks, T. J.; Hersam, M. C. Fundamental performance limits of carbon nanotube thin-film transistors achieved using hybrid molecular dielectrics. ACS Nano 2012, 6, 7480–7488.

    Article  Google Scholar 

  26. Rouhi, N.; Jain, D.; Burke, P. J. High-performance semiconducting nanotube inks: Progress and prospects. ACS Nano 2011, 5, 8471–8487.

    Article  Google Scholar 

  27. Wang, C.; Takei, K.; Takahashi, T.; Javey, A. Carbon nanotube electronics-moving forward. Chem. Soc. Rev. 2013, 42, 2592–2609.

    Article  Google Scholar 

  28. Arnold, M. S.; Green, A. A.; Hulvat, J. F.; Stupp, S. I.; Hersam, M. C. Sorting carbon nanotubes by electronic structure using density differentiation. Nat. Nanotechnol. 2006, 1, 60–65.

    Article  Google Scholar 

  29. Green, A. A.; Hersam, M. C. Nearly single-chirality single-walled carbon nanotubes produced via orthogonal iterative density gradient ultracentrifugation. Adv. Mater. 2011, 23, 2185–2190.

    Article  Google Scholar 

  30. Choi, S.-J.; Wang, C.; Lo, C. C.; Bennett, P.; Javey, A.; Bokor, J. Comparative study of solution-processed carbon nanotube network transistors. Appl. Phys. Lett. 2012, 101, 112104.

    Article  Google Scholar 

  31. Choi, S.-J.; Bennett, P.; Takei, K.; Wang, C.; Lo, C. C.; Javey, A.; Bokor, J. Short-channel transistors constructed with solution-processed carbon nanotubes. ACS Nano 2013, 7, 798–803.

    Article  Google Scholar 

  32. Sarker, B. K.; Shekhar, S.; Khondaker, S. I. Semiconducting enriched carbon nanotube aligned arrays of tunable density and their electrical transport properties. ACS Nano 2011, 5, 6297–6305.

    Article  Google Scholar 

  33. Lee, D.; Seol, M. L.; Moon, D. I.; Bennett, P.; Yoder, N.; Humes, J.; Bokor, J.; Choi, Y.-K.; Choi, S.-J. High-performance thin-film transistors produced from highly separated solution processed carbon nanotubes. Appl. Phys. Lett. 2014, 104, 143508.

    Article  Google Scholar 

  34. Wang, C.; Zhang, J; Ryu, K.; Badmaev, A.; Gomez, L.; Zhou, C. Wafer-scale fabrication of separated carbon nanotube thin-film transistors for display applications. Nano Lett. 2009, 9, 4285–4291.

    Article  Google Scholar 

  35. Rouhi, N.; Jain, D.; Zand, K.; Burke, P. J. Fundamental limits on the mobility of nanotube-based semiconducting inks. Adv. Mater. 2011, 23, 94–99.

    Article  Google Scholar 

  36. Pimparkar, N.; Cao, Q.; Rogers, J. A.; Alam, M. A. Theory and practice of “Striping” for improved ON/OFF ratio in carbon nanonet thin film transistors. Nano Res. 2009, 2, 167–175.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jeffrey Bokor.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Choi, SJ., Bennett, P., Lee, D. et al. Highly uniform carbon nanotube nanomesh network transistors. Nano Res. 8, 1320–1326 (2015). https://doi.org/10.1007/s12274-014-0623-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-014-0623-8

Keywords

Navigation