Skip to main content
Log in

Hierarchical TiO2-B nanowire@α-Fe2O3 nanothorn core-branch arrays as superior electrodes for lithium-ion microbatteries

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

This paper reports a simple yet efficient method for the synthesis of hierarchical TiO2-B nanowire@α-Fe2O3 nanothorn core-branch arrays based on a stepwise hydrothermal approach. The as-fabricated hybrid arrays show impressive performance as a high-capacity anode for lithium-ion batteries. The key design in this study is a core-branch hybrid architecture, which not only provides large surface active sites for lithium ion insertion/extraction, but also enables fast charge transport owing to the reduced diffusion paths for both electrons and lithium ions. The peculiar combination of attributes of TiO2 (good structural stability) and Fe2O3 (large specific capacity) provides the hybrid array electrodes with several desirable electrochemical features: large reversible capacity (∼800 mA·h·g−1 for specific mass capacity and ∼750 μA·h·cm−2 for specific areal capacity), good cycling stability, and high rate capability. The impressive electrochemical performance, together with the facile synthesis procedure, may provide an efficient platform to integrate the TiO2 nanowire@Fe2O3 nanothorn core-branch arrays as a three-dimensional thin film electrode for lithium-ion microbatteries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Dunn, B.; Long, J. W.; Rolison, D. R. Rethinking multifunction in three dimensions for miniaturizing electrical energy storage. Electrochem. Soc. Inter. 2008, 17, 49–53.

    Google Scholar 

  2. Zhou, Y. N.; Xue, M. Z.; Fu, Z. W. Nanostructured thin film electrodes for lithium storage and all-solid-state thin-film lithium batteries. J. Power Sources 2013, 234, 310–332.

    Article  Google Scholar 

  3. Kitaura, H.; Hayashi, A.; Ohtomo, T.; Hama, S.; Tatsumisago, M. Fabrication of electrode-electrolyte interfaces in all-solid-state rechargeable lithium batteries by using a supercooled liquid state of the glassy electrolytes. J. Mater. Chem. 2011, 21, 118–124.

    Article  Google Scholar 

  4. Zhu, J.; Feng, J.; Lu, L.; Zeng, K. In situ study of topography, phase and volume changes of titanium dioxide anode in all-solid-state thin film lithium-ion battery by biased scanning probe microscopy. J. Power Sources 2012, 197, 224–230.

    Article  Google Scholar 

  5. Liu, H.; Wang, Y.; Wang, K.; Hosono, E.; Zhou, H. Design and synthesis of a novel nanothorn VO2(B) hollow microsphere and their application in lithium-ion batteries. J. Mater. Chem. 2009, 19, 2835–2840.

    Article  Google Scholar 

  6. Pan, J. H.; Han, G.; Zhou, R.; Zhao, X. S. Hierarchical n-doped TiO2 hollow microspheres consisting of nanothorns with exposed anatase {101} facets. Chem. Commun. 2011, 47, 6942–6944.

    Article  Google Scholar 

  7. Xu, W.; Wang, Z.; Guo, Z.; Liu, Y.; Zhou, N.; Niu, B.; Shi, Z.; Zhang, H. Nanoporous anatase TiO2/single-wall carbon nanohorns composite as superior anode for lithium ion batteries. J. Power Sources 2013, 232, 193–198.

    Article  Google Scholar 

  8. Zhao, Y.; Li, J.; Ding, Y.; Guan, L. Single-walled carbon nanohorns coated with Fe2O3 as a superior anode material for lithium ion batteries. Chem. Commun. 2011, 47, 7416–7418.

    Article  Google Scholar 

  9. Oudenhoven, J. F. M.; Baggetto, L.; Notten, P. H. L. All-solid-state lithium-ion microbatteries: A review of various three-dimensional concepts. Adv. Energy Mater. 2011, 1, 10–33.

    Article  Google Scholar 

  10. Notten, P. H. L.; Roozeboom, F.; Niessen, R. A. H.; Baggetto, L. 3-D integrated all-solid-state rechargeable batteries. Adv. Mater. 2007, 19, 4564–4567.

    Article  Google Scholar 

  11. Etacheri, V.; Marom, R.; Elazari, R.; Salitra, G.; Aurbach, D. Challenges in the development of advanced Li-ion batteries: A review. Energy Environ Sci. 2011, 4, 3243–3262.

    Article  Google Scholar 

  12. Lin, Y. M.; Nagarale, R. K.; Klavetter, K. C.; Heller, A.; Mullins, C. B. SnO2 and TiO2 supported SnO2 lithium battery anodes with improved electrochemical performance. J. Mater. Chem. 2012, 22, 11134–11139.

    Article  Google Scholar 

  13. Ortiz, G. F.; Hanzu, I.; Lavela, P.; Tirado, J. L.; Knauth, P.; Djenizian, T. A novel architectured negative electrode based on titania nanotube and iron oxide nanowire composites for li-ion microbatteries. J. Mater. Chem. 2010, 20, 4041–4046.

    Article  Google Scholar 

  14. Ji, L.; Lin, Z.; Alcoutlabi, M.; Zhang, X. Recent developments in nanostructured anode materials for rechargeable lithiumion batteries. Energy Environ. Sci. 2011, 4, 2682–2699.

    Article  Google Scholar 

  15. Cheng, F.; Liang, J.; Tao, Z.; Chen, J. Functional materials for rechargeable batteries. Adv. Mater. 2011, 23, 1695–1715.

    Article  Google Scholar 

  16. Luo, W.; Hu, X.; Sun, Y.; Huang, Y. Surface modification of electrospun TiO2 nanofibers via layer-by-layer self-assembly for high-performance lithium-ion batteries. J. Mater. Chem. 2012, 22, 4910–4915.

    Article  Google Scholar 

  17. Ni, J.; Yang, L.; Wang, H.; Gao, L. A high-performance hybrid supercapacitor with Li4Ti5O12-C nanocomposite prepared by in situ and ex situ carbon modification. J. Solid State Electrchem. 2012, 16, 2791–2796.

    Article  Google Scholar 

  18. Tang, Y.; Tan, X.; Hou, G.; Cao, H.; Zheng, G. Synthesis of dense nanocavities inside TiO2 nanowire array and its electrochemical properties as a three-dimensional anode material for Li-ion batteries. Electrochim. Acta 2012, 78, 154–159.

    Article  Google Scholar 

  19. Guo, J.; Liu, J. Topotactic conversion-derived Li4Ti5O12-rutile TiO2 hybrid nanowire array for high-performance lithium ion full cells. RSC Adv. 2014, 4, 12950–12957.

    Article  Google Scholar 

  20. Lv, M.; Zheng, D.; Ye, M.; Xiao, J.; Guo, W.; Lai, Y.; Sun, L.; Lin, C.; Zuo, J. Optimized porous rutile TiO2 nanorod arrays for enhancing the efficiency of dye-sensitized solar cells. Energy Environ. Sci. 2013, 6, 1615–1622.

    Article  Google Scholar 

  21. Wei, W.; Oltean, G.; Tai, C.-W.; Edström, K.; Björefors, F.; Nyholm, L. High energy and power density TiO2 nanotube electrodes for 3D lithium ion microbatteries. J. Mater. Chem. A 2013, 1, 8160–8169.

    Article  Google Scholar 

  22. Wang, H.; Ma, D.; Huang, X.; Huang, Y.; Zhang, X. General and controllable synthesis strategy of metal oxide/TiO2 hierarchical heterostructures with improved lithium-ion battery performance. Sci. Rep. 2012, 2, 701.

    Google Scholar 

  23. Wang, Z.; Lou, X. W. TiO2 nanocages: Fast synthesis, interior functionalization and improved lithium storage properties. Adv. Mater. 2012, 24, 4124–4129.

    Article  Google Scholar 

  24. Zhang, X.; Chen, H.; Xie, Y.; Guo, J. Ultralong life lithiumion battery anode with superior high-rate capability and excellent cyclic stability from mesoporous Fe2O3@ TiO2 core-shell nanorods. J. Mater. Chem. A 2014, 2, 3912–3918.

    Article  Google Scholar 

  25. Zhu, G. N.; Wang, Y. G.; Xia, Y. Y. Ti-based compounds as anode materials for lithium ion batteries. Energy Environ. Sci. 2012, 5, 6652–6667.

    Article  Google Scholar 

  26. Yang, M. C.; Lee, Y. Y.; Xu, B.; Powers, K.; Meng, Y. S. TiO2 flakes as anode materials for lithium ion batteries. J. Power Sources 2012, 207, 166–172.

    Article  Google Scholar 

  27. Gu, X.; Chen, L.; Liu, S.; Xu, H.; Yang, J.; Qian, Y. Hierarchical core-shell α-Fe2O3@C nanotubes as a high-rate and long-life anode for advanced lithium ion batteries. J. Mater. Chem. A 2014, 2, 3439–3444.

    Article  Google Scholar 

  28. Lou, X. W.; Archer, L. A.; Yang, Z. Hollow micro-/nanostructures: Synthesis and applications. Adv. Mater. 2008, 20, 3987–4019.

    Article  Google Scholar 

  29. Xu, L. Q. D. J.; Li, P.; Qian, Y. T. In situ synthesis, magnetic property, and formation mechanism of Fe3O4 particles encapsulated in 1D bamboo-shaped carbon microtubes. J. Phys. Chem. B 2006, 110, 3871–3875.

    Article  Google Scholar 

  30. Wang, Z.; Luan, D.; Madhavi, S.; Hu, Y.; Lou, X. W. Assembling carbon-coated α-Fe2O3 hollow nanohorns on the CNT backbone for superior lithium storage capability. Energy Environ. Sci. 2012, 5, 5252–5256.

    Article  Google Scholar 

  31. Liu, N.; Shen, J.; Liu, D. A Fe2O3 nanoparticle/carbon aerogel composite for use as an anode material for lithium ion batteries. Electrochim. Acta 2013, 97, 271–277.

    Article  Google Scholar 

  32. Luo, Y.; Luo, J.; Jiang, J.; Zhou, W.; Yang, H.; Qi, X.; Zhang, H.; Fan, H. J.; Yu, D. Y. W.; Li, C. M.; et al. Seed-assisted synthesis of highly ordered TiO2@α-Fe2O3 core/shell arrays on carbon textiles for lithium-ion battery applications. Energy Environ. Sci. 2012, 5, 6559–6566.

    Article  Google Scholar 

  33. Yu, L.; Wang, Z.; Zhang, L.; Wu, H. B.; Lou, X. W. TiO2 nanotube arrays grafted with Fe2O3 hollow nanorods as integrated electrodes for lithium-ion batteries. J. Mater. Chem. A 2013, 1, 122–127.

    Article  Google Scholar 

  34. Luo, J.; Xia, X.; Luo, Y.; Guan, C.; Liu, J.; Qi, X.; Ng, C. F.; Yu, T.; Zhang, H.; Fan, H. J. Rationally designed hierarchical TiO2@Fe2O3 hollow nanostructures for improved lithium ion storage. Adv. Energy Mater. 2013, 3, 737–743.

    Article  Google Scholar 

  35. Dylla, A. G. H.; Henkelman, G.; Stevenson, K. J. Lithium insertion in nanostructured TiO2 (B) architectures. Acc. Chem. Res. 2013, 46, 1104–1112.

    Article  Google Scholar 

  36. Liu, S.; Wang, Z.; Yu, C.; Wu, H. B.; Wang, G.; Dong, Q.; Qiu, J.; Eychmuller, A.; David Lou, X. W. A flexible TiO2 (B)-based battery electrode with superior power rate and ultralong cycle life. Adv. Mater. 2013, 25, 3462–3467.

    Article  Google Scholar 

  37. Ren, Y.; Liu, Z.; Pourpoint, F.; Armstrong, A. R.; Grey, C. P.; Bruce, P. G. Nanoparticulate TiO2(B): An anode for lithium-ion batteries. Angew. Chem. Int. Ed. 2012, 51, 2164–2167.

    Article  Google Scholar 

  38. Saito, M.; Nakano, Y.; Takagi, M.; Honda, N.; Tasaka, A.; Inaba, M. Improvement of tap density of TiO2(B) powder as high potential negative electrode for lithium ion batteries. J. Power Sources 2013, 244, 50–55.

    Article  Google Scholar 

  39. Zhuang, W.; Lu, L.; Wu, X.; Jin, W.; Meng, M.; Zhu, Y.; Lu, X. TiO2-B nanofibers with high thermal stability as improved anodes for lithium ion batteries. Electrochem. Commun. 2013, 27, 124–127.

    Article  Google Scholar 

  40. Li, J.; Wan, W.; Zhou, H.; Li, J.; Xu, D. Hydrothermal synthesis of TiO2(B) nanowires with ultrahigh surface area and their fast charging and discharging properties in Li-ion batteries. Chem. Commun. 2011, 47, 3439–3441.

    Article  Google Scholar 

  41. Aravindan, V.; Shubha, N.; Cheah, Y. L.; Prasanth, R.; Chuiling, W.; Prabhakar, R. R.; Madhavi, S. Extraordinary long-term cycleability of TiO2-B nanorods as anodes in full-cell assembly with electrospun membranes. J. Mater. Chem. A 2013, 1, 308–316.

    Article  Google Scholar 

  42. Wang, C.; Zhang, X.; Zhang, Y.; Jia, Y.; Yang, J.; Sun, P.; Liu, Y. Hydrothermal growth of layered titanate nanosheet arrays on titanium foil and their topotactic transformation to heterostructured TiO2 photocatalysts. J. Phys. Chem. C 2011, 115, 22276–22285.

    Article  Google Scholar 

  43. Xiong, W.; Wang, Y. D.; Xia, H. TiO2 nanowire arrays with mixed phases directly grown on Ti foil and their electrochemical properties as anode material for lithium ion batteries. Mater. Technol. 2013, 28, 260–264.

    Article  Google Scholar 

  44. Liao, J. Y.; Xiao, X.; Higgins, D.; Lui, G.; Chen, Z. Self-supported single crystalline H2Ti8O17 nanoarrays as integrated three-dimensional anodes for lithium-ion microbatteries. ACS Appl. Mater. Interfaces 2014, 6, 568–574.

    Article  Google Scholar 

  45. Tang, L.; Wang, Y.; Li, Y.; Feng, H.; Lu, J.; Li, J. Preparation, structure, and electrochemical properties of reduced graphene sheet films. Adv. Funct. Mater. 2009, 19, 2782–2789.

    Article  Google Scholar 

  46. Yamashita, T.; Hayes, P. Analysis of XPS spectra of Fe2+ and Fe3+ ions in oxide materials. Appl. Surf. Sci. 2008, 254, 2441–2449.

    Article  Google Scholar 

  47. Pradhan, G. K.; Parida, K. M. Fabrication, growth mechanism, and characterization of α-Fe2O3 nanorods. ACS Appl. Mater. Interfaces 2011, 3, 317–323.

    Article  Google Scholar 

  48. Lin, F.; Song, H.; Tian, S.; Chen, X.; Zhou, J.; Wang, F. Fe1.5Ti0.5O3 nanoparticles as an anode material for lithiumion batteries. Electrochim. Acta 2012, 83, 305–310.

    Article  Google Scholar 

  49. Grosvenor, A. P.; Kobe, B. A.; Biesinger, M. C.; McIntyre, N. S. Investigation of multiplet splitting of Fe 2p XPS spectra and bonding in iron compounds. Surf. Interface Anal. 2004, 36, 1564–1574.

    Article  Google Scholar 

  50. Armstrong, A. R.; Armstrong, G.; Canales, J.; García, R.; Bruce, P. G. Lithium-ion intercalation into TiO2-B nanowires. Adv. Mater. 2005, 17, 862–865.

    Article  Google Scholar 

  51. Reddy, M. V.; Yu, T.; Sow, C. H.; Shen, Z. X.; Lim, C. T.; Subba Rao, G. V.; Chowdari, B. V. R. α-Fe2O3 nanoflakes as an anode material for lithium ion batteries. Adv. Funct. Mater. 2007, 17, 2792–2799.

    Article  Google Scholar 

  52. Li, R.; Xie, Z.; Lu, H.; Zhang, D. W.; Yu, A. Fabrication of ZnO@TiO2 core-shell nanotube arrays as three-dimensional anode material for lithium ion batteries. Int. J. Electrochem. Sci. 2013, 8, 11118–11124.

    Google Scholar 

  53. Guan, D.; Li, J.; Gao, X.; Yuan, C. Controllable synthesis of MoO3-deposited TiO2 nanotubes with enhanced lithiumion intercalation performance. J. Power Sources 2014, 246, 305–312.

    Article  Google Scholar 

  54. Luo, Y.; Luo, J.; Zhou, W.; Qi, X.; Zhang, H.; Yu, D. Y. W.; Li, C. M.; Fan, H. J.; Yu, T. Controlled synthesis of hierarchical graphene-wrapped TiO2@Co3O4 coaxial nanobelt arrays for high-performance lithium storage. J. Mater. Chem. A 2013, 1, 273–281.

    Article  Google Scholar 

  55. Liao, J. Y.; Higgins, D.; Lui, G.; Chabot, V.; Xiao, X.; Chen, Z. Multifunctional TiO2-C/MnO2 core-double-shell nanowire arrays as high-performance 3D electrodes for lithium ion batteries. Nano Lett. 2013, 13, 5467–5473.

    Article  Google Scholar 

  56. Xu, X.; Fan, Z.; Ding, S.; Yu, D.; Du, Y. Fabrication of MoS2 nanosheet@TiO2 nanotube hybrid nanostructures for lithium storage. Nanoscale 2014, 6, 5245–5250.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hui Xia, Yadong Wang or Jianping Xie.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xia, H., Xiong, W., Lim, C.K. et al. Hierarchical TiO2-B nanowire@α-Fe2O3 nanothorn core-branch arrays as superior electrodes for lithium-ion microbatteries. Nano Res. 7, 1797–1808 (2014). https://doi.org/10.1007/s12274-014-0539-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-014-0539-3

Keywords

Navigation