Skip to main content

Advertisement

Log in

A high-performance hybrid supercapacitor with Li4Ti5O12-C nano-composite prepared by in situ and ex situ carbon modification

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

In this work, we report on the synthesis of in situ and ex situ carbon-modified Li4Ti5O12-C (LTO-C) nano-composite and its application in a hybrid supercapacitor constructed using activated carbon (AC) and LTO-C nano-composite as positive and negative electrodes, respectively. The hybrid capacitors are characterized by galvanostatic charge–discharge, cycle life testing, and electrochemical impedance spectroscopy. The results reveal that the AC/LTO-C hybrid capacitors exhibit high rate capability and long cycle life. In the potential range of 1.5–3.0 V, the AC/LTO-C hybrid system can deliver a specific capacitance of 83 F g−1 based on the total mass of AC and LTO-C electrodes at a current density of 60 mA g−1 (2 C rate). At a higher discharge rate of 980 mA g−1 (32 C), the capacity is 68 F g−1, about 82 % of that at 2 C rate. After 9,000 deep cycles at 32 C, the hybrid capacitor still maintains 84 % of its initial capacitance. The specific energy of such hybrid system is 20 Wh kg−1, which is at least twice that of an AC/AC system. Combining the high energy density with power capability, the AC/LTO-C hybrid supercapacitor has demonstrated high performance for applications needing high power output.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Conway BE (1999) Electrochemical supercapacitors: scientific fundamentals and technological applications. Kluwer Academic/Plenum, New York

    Google Scholar 

  2. Kotz R, Carlen M (2000) Electrochim Acta 45:2483–2498

    Article  CAS  Google Scholar 

  3. Burke AF (2007) Electrochim Acta 53:1083–1091

    Article  CAS  Google Scholar 

  4. Amatucci GG, Badway E, Pasquier AD, Zheng T (2001) J Electrochem Soc 148:A930–A939

    Article  CAS  Google Scholar 

  5. Yu N, Gao L, Zhao S, Wang Z (2009) Electrochim Acta 54:3835–3841

    Article  CAS  Google Scholar 

  6. Stewart S, Albertus P, Srinivasan V, Plitz I, Pereira N, Amatucci G, Newman J (2008) J Electrochem Soc 153:A253–A261

    Article  Google Scholar 

  7. Yang L, Gao L (2009) J Alloys Comp 485:93–97

    Article  CAS  Google Scholar 

  8. Du Pasquier A, Plitz I, Gural J, Menocal S, Amatucci GG (2003) J Power Sources 113:62–71

    Article  Google Scholar 

  9. Cheng L, Liu HJ, Zhang JJ, Xiong HM, Xia YY (2006) J Electrochem Soc 153:A1472–A1477

    Article  CAS  Google Scholar 

  10. Jiang C, Ichihara M, Honma I, Zhou H (2007) Electrochim Acta 52:6470–6475

    Article  CAS  Google Scholar 

  11. Kalbáč M, Zukalová M, Kavan L (2003) J Solid State Electrochem 8:2–6

    Article  Google Scholar 

  12. Liu P, Sherman E, Verbrugge M (2010) J Solid State Electrochem 14:585–591

    Article  CAS  Google Scholar 

  13. Jhan Y-R, Lin C-Y, Duh J-G (2011) Mater Lett 65:2502–2505

    Article  CAS  Google Scholar 

  14. Qi Y, Huang Y, Jia D, Bao SJ, Guo ZP (2009) Electrochim Acta 54:4772–4776

    Article  CAS  Google Scholar 

  15. Wang GJ, Ga J, Fu LJ, Zhao NH, Wu YP, Takamuro T (2007) J Power Sources 174:1109–1112

    Article  CAS  Google Scholar 

  16. Yuan T, Yu X, Cai R, Zhou Y, Shao Z (2010) J Power Sources 195:4997–5004

    Article  CAS  Google Scholar 

  17. Wang Y, Liu H, Wang K, Eiji H, Wang Y, Zhou H (2009) J Mater Chem 19:6789–6795

    Article  CAS  Google Scholar 

  18. Zhao L, Hu Y-S, Li H, Wang Z, Chen L (2011) Adv Mater 23:1385–1388

    Article  CAS  Google Scholar 

  19. Zhu N, Liu W, Xue M, Xie Z, Zhao D, Zhang M, Chen J, Cao T (2010) Electrochim Acta 55:5813–5818

    Article  CAS  Google Scholar 

  20. Naoi K, Ishimoto S, Isobe Y, Aoyagi S (2010) J Power Sources 195:6250–6254

    Article  CAS  Google Scholar 

  21. Naoi K (2010) Fuel Cells 10:825–833

    Article  CAS  Google Scholar 

  22. Kellerman DG, Gorshkov VS, Shalaeva EV, Tsaryev BA, Vovkotrub EG (2012) Solid State Sci 14:72–79

    Article  CAS  Google Scholar 

  23. Chen YC, Ouyang CY, Song LJ, Sun ZL (2011) Electrochim Acta 56:6084–6088

    Article  CAS  Google Scholar 

  24. Conway BE (1991) J Electrochem Soc 138:1539–1548

    Article  CAS  Google Scholar 

  25. Du Pasquier A, Plitz I, Menocal S, Amatucci G (2003) J Power Sources 115:171–178

    Article  Google Scholar 

  26. Li Y, Zijll M, Chiang S, Pan N (2011) J Power Sources 196:6003–6006

    Article  CAS  Google Scholar 

  27. Dandekar MS, Arabale G, Vijayamohanan K (2005) J Power Sources 141:198–203

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Financial support of National 863 Project (No. 2011AA11A235) is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lijun Gao.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ni, J., Yang, L., Wang, H. et al. A high-performance hybrid supercapacitor with Li4Ti5O12-C nano-composite prepared by in situ and ex situ carbon modification. J Solid State Electrochem 16, 2791–2796 (2012). https://doi.org/10.1007/s10008-012-1704-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-012-1704-9

Keywords

Navigation