Skip to main content
Log in

Shape Effect of AuPd Core-Shell Nanostructures on the Electrocatalytical Activity for Oxygen Reduction Reaction in Acid Medium

  • Original Research
  • Published:
Electrocatalysis Aims and scope Submit manuscript

Abstract

AuPd core-shell nanostructured materials as electrocatalysts for oxygen reduction reaction (ORR) were synthesized, and the effects of size and shape of the nanoparticles were analyzed. The seed growth method was used to obtain three nanostructures: octahedrons, cuboctahedrons, and cubes, by varying the Au:Pd composition. These different nanostructures were confirmed by SEM. The electrochemical surface areas obtained were 29.50, 18.61, and 32.74 cm2 for octahedral, cuboctaedral, and cubic nanostructures, respectively. The cubic nanostructure has the largest ESA due to its smaller nanoparticle size and/or its lower tendency to agglomerate. The electrocatalytic activity for ORR in 0.5 M HClO4 using rotating disk electrode showed that the best electrocatalytic material was the AuPd cubic nanostructure. Consequently, it was possible to establish that the electrocatalytic activity for ORR in acid medium depends on the electronic and geometric effects related to the Au:Pd composition, the size and shape of the nanoparticles, and core-shell configuration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. J.H. Seog, D. Kim, Y. Kim, N.S. Kim, S.B. Lee, S. Woo Han, One-pot synthesis of Pd@Pt core–shell nanocrystals for electrocatalysis: control of crystal morphology with polyoxometalate. CrystEngComm 18(32), 6029–6034 (2016)

    Article  CAS  Google Scholar 

  2. C. Zhang, M. Shao, F. Ning, S. Xu, Z. Li, M. Wei, D.G. Evans, X. Duan, Au nanoparticles sensitized ZnO nanorod@nanoplatelet core–shell arrays for enhanced photoelectrochemical water splitting. Nano Energy 12, 231–239 (2015)

    Article  CAS  Google Scholar 

  3. J. Wang, Z. Yang, X. Gao, W. Yao, W. Wei, X. Chen, R. Zong, Y. Zhu, Core-shell g-C 3 N 4 @ZnO composites as photoanodes with double synergistic effects for enhanced visible-light photoelectrocatalytic activities. Appl. Catal. B Environ. 217, 169–180 (2017)

    Article  CAS  Google Scholar 

  4. G. Elmaci, C.E. Frey, P. Kurz, B. Zümreoǧlu-Karan, Water Oxidation Catalysis by Birnessite@Iron Oxide Core–Shell Nanocomposites. Inorg. Chem. 54(6), 2734–2741 (2015)

    Article  CAS  PubMed  Google Scholar 

  5. X. Yu, J. Li, T. Shi, C. Cheng, G. Liao, J. Fan, T. Li, Z. Tang, A green approach of synthesizing of Cu-Ag core-shell nanoparticles and their sintering behavior for printed electronics. J. Alloys Compd. 724, 365–372 (2017)

    Article  CAS  Google Scholar 

  6. Y. Wei, S. Chen, Y. Lin, Z. Yang, L. Liu, Cu–Ag core–shell nanowires for electronic skin with a petal molded microstructure. J. Mater. Chem. C 3(37), 9594–9602 (2015)

    Article  CAS  Google Scholar 

  7. P. Ramasamy, B. Kim, M.-S. Lee, J.-S. Lee, Beneficial effects of water in the colloidal synthesis of InP/ZnS core–shell quantum dots for optoelectronic applications. Nanoscale 8(39), 17159–17168 (2016)

    Article  CAS  PubMed  Google Scholar 

  8. L.Y. Lin, L.Y. Lin, Material Effects on the Electrocapacitive Performance for the Energy-storage Electrode with Nickel Cobalt Oxide Core/shell Nanostructures. Electrochim. Acta 250, 335–347 (2017)

    Article  CAS  Google Scholar 

  9. S.R. Sabale, P. Kandesar, V. Jadhav, R. Komorek, R.K. Motkuri, X.-Y. Yu, Recent developments in the synthesis, properties, and biomedical applications of core/shell superparamagnetic iron oxide nanoparticles with gold. Biomater. Sci. 5(11), 2212–2225 (2017)

    Article  CAS  PubMed  Google Scholar 

  10. H. Ming, Chem. Commun. 52, 1567 (2016)

    Article  CAS  Google Scholar 

  11. R. Ghosh Chaudhuri, S. Paria, Core/Shell Nanoparticles: Classes, Properties, Synthesis Mechanisms, Characterization, and Applications. Chem. Rev. 112(4), 2373–2433 (2012)

    Article  CAS  PubMed  Google Scholar 

  12. P. Mélinon, S. Begin-colin, J. Luc, F. Gauffre, N. Herlin, G. Ledoux, J. Plain, P. Reiss, F. Silly, B. Warot-fonrose, Engineered inorganic core/shell nanoparticles. Phys. Rep. 543(3), 163–197 (2014)

    Article  CAS  Google Scholar 

  13. G. Gotti, D. Evrard, K. Fajerwerg, P. Gros, Oxygen reduction reaction features in neutral media on glassy carbon electrode functionalized by chemically prepared gold nanoparticles. J. Solid State Electrochem. 20(6), 1539–1550 (2016)

    Article  CAS  Google Scholar 

  14. J. Zhang, Recent advances in cathode electrocatalysts for PEM fuel cells. Front. Energy 5(2), 137–148 (2011)

    Article  Google Scholar 

  15. G. Zhang, Z.G. Shao, W. Lu, F. Xie, H. Xiao, X. Qin, B. Yi, Appl. Catal. B Environ. 132–133, 183 (2013)

    Article  CAS  Google Scholar 

  16. Y. Kim, J. Guk, K. Yuseong, W.B. Kim, An Overview of One-Dimensional Metal Nanostructures for Electrocatalysis. Catal. Surv. Jpn. 19(2), 88–121 (2015)

    Article  CAS  Google Scholar 

  17. S. Wang, L. Kuai, Y. Huang, X. Yu, Y. Liu, W. Li, L. Chen, B. Geng, Chem. Eur. J. 240 (2013)

  18. M. Shao, Palladium-based electrocatalysts for hydrogen oxidation and oxygen reduction reactions. J. Power Sources 196(5), 2433–2444 (2011)

    Article  CAS  Google Scholar 

  19. Y. Li, Z.W. Wang, C.-Y. Chiu, L. Ruan, W. Yang, Y. Yang, R.E. Palmer, Y. Huang, Synthesis of bimetallic Pt-Pd core-shell nanocrystals and their high electrocatalytic activity modulated by Pd shell thickness. Nanoscale 4(3), 845–851 (2012)

    Article  CAS  PubMed  Google Scholar 

  20. N.V. Long, M. Ohtaki, T.D. Hien, J. Randy, M. Nogami, A comparative study of Pt and Pt–Pd core–shell nanocatalysts. Electrochim. Acta 56(25), 9133–9143 (2011)

    Article  CAS  Google Scholar 

  21. L. Xiao, L. Zhuang, Y. Liu, J. Lu, H.D. Abruña, Activating Pd by Morphology Tailoring for Oxygen Reduction. J. Am. Chem. Soc. 131(2), 602–608 (2009)

    Article  CAS  PubMed  Google Scholar 

  22. J.J. Lv, J.N. Zheng, Y.Y. Wang, A.J. Wang, L.L. Chen, J.J. Feng, A simple one-pot strategy to platinum–palladium@palladium core–shell nanostructures with high electrocatalytic activity. J. Power Sources 265, 231–238 (2014)

    Article  CAS  Google Scholar 

  23. J. Li, P. Zhou, F. Li, J. Ma, Y. Liu, X. Zhang, H. Huo, J. Jin, J. Ma, Shape-controlled synthesis of Pd polyhedron supported on polyethyleneimine-reduced graphene oxide for enhancing the efficiency of hydrogen evolution reaction. J. Power Sources 302, 343–351 (2016)

    Article  CAS  Google Scholar 

  24. S. Tymen, A. Undisz, M. Rettenmayr, A. Ignaszak, Pt–Pd catalytic nanoflowers: Synthesis, characterization, and the activity toward electrochemical oxygen reduction. J. Mater. Res. 30(15), 2327–2339 (2015)

    Article  CAS  Google Scholar 

  25. C.W. Chen, Y.S. Hsieh, C.C. Syu, H.R. Chen, C.L. Lee, Displacement preparation-induced effects on structure of Ag–Pd nanobrushes for catalyzing oxygen reduction. J. Alloys Compd. 580, S359–S363 (2013)

    Article  CAS  Google Scholar 

  26. G. Fu, Z. Liu, Y. Chen, J. Lin, Y. Tang, T. Lu, Synthesis and electrocatalytic activity of Au@Pd core-shell nanothorns for the oxygen reduction reaction. Nano Res. 7(8), 1205–1214 (2014)

    Article  CAS  Google Scholar 

  27. Y. Lu, S. Du, R. Steinberger-Wilckens, Three-dimensional catalyst electrodes based on PtPd nanodendrites for oxygen reduction reaction in PEFC applications. Appl. Catal. B Environ. 187, 108–114 (2016)

    Article  CAS  Google Scholar 

  28. C. Koenigsmann, A.C. Santulli, E. Sutter, S.S. Wong, Ambient Surfactantless Synthesis, Growth Mechanism, and Size-Dependent Electrocatalytic Behavior of High-Quality, Single Crystalline Palladium Nanowires. ACS Nano 5(9), 7471–7487 (2011)

    Article  CAS  PubMed  Google Scholar 

  29. C.W. Yang, K. Chanda, P.H. Lin, Y.N. Wang, C.W. Liao, M.H. Huang, Fabrication of Au–Pd Core–Shell Heterostructures with Systematic Shape Evolution Using Octahedral Nanocrystal Cores and Their Catalytic Activity. J. Am. Chem. Soc. 133(49), 19993–20000 (2011)

    Article  CAS  PubMed  Google Scholar 

  30. Y. Dong, X. Yang, Z. Zhang, S. Dong, S. Li, Photochemical Synthesis of Au@Pd Core-Shell Nanoparticles for Methanol Oxidation Reaction: the Promotional Effect of the Au Core. MATEC Web of Conferences 65(4005) (2016). https://doi.org/10.1051/matecconf/20166504005

    Article  CAS  Google Scholar 

  31. C. Hsu, C. Huang, Y. Hao, F. Liu, Au/Pd core-shell nanoparticles with varied hollow Au cores for enhanced formic acid oxidation. Nanoscale Res. Lett. 8(1), 113 (2013)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  32. C.N. Brodsky, A.P. Young, K.C. Ng, C.H. Kuo, C.K. Tsung, Electrochemically Induced Surface Metal Migration in Well-Defined Core–Shell Nanoparticles and Its General Influence on Electrocatalytic Reactions. ACS Nano 8(9), 9368–9378 (2014)

    Article  CAS  PubMed  Google Scholar 

  33. J.H. Shim, J. Kim, C. Lee, Y. Lee, Porous Pd Layer-Coated Au Nanoparticles Supported on Carbon: Synthesis and Electrocatalytic Activity for Oxygen Reduction in Acid Media. Chem. Mater. 23(21), 4694–4700 (2011)

    Article  CAS  Google Scholar 

  34. M. Shao, Electrocatalysis in Fuel Cells, Lecture Notes in Energy 9 (Springer-Verlag, London, 2013), pp. 339–374

    Book  Google Scholar 

  35. J. Masa, C. Batchelor-McAuley, W. Schuhmann, R.G. Compton, Koutecky-Levich analysis applied to nanoparticle modified rotating disk electrodes: Electrocatalysis or misinterpretation. Nano Res. 7(1), 71–78 (2014)

    Article  CAS  Google Scholar 

  36. J.M. Mora-Hernández, A. Ezeta-Mejía, C. Reza-San Germán, S. Citalán-Cigarroa, E.M. Arce-Estrada, Electrochemical activity towards ORR of mechanically alloyed PdCo supported on Vulcan carbon and carbon nanospheres. J. Appl. Electrochem. 44(12), 1307–1315 (2014)

    Article  CAS  Google Scholar 

  37. L.H. Brickwedde, Properties of aqueous solutions of perchloric acid. Natl. Bur. Stand 42(3), 309 (1949)

    Article  CAS  Google Scholar 

  38. A.J. Bard, L.R. Faulkner, Electrochemical Methods: Fundamentals and Applications, 2nd edn. (John Wiley & Sons, New York, 2001), pp. 87–107

    Google Scholar 

  39. J.O. Bockris, A.K.N. Reddy, M. Gamboa-Aldeco, Modern Electrochemistry, Fundamentals of Electrodic, 2nd edn. (Kluwer Academic Publishers, New York, 2000), pp. 1438–1442

    Google Scholar 

  40. O. Antoine, Y. Bultel, R. Durand, Oxygen reduction reaction kinetics and mechanism on platinum nanoparticles inside Nafion®. J. Electroanal. Chem. 499(1), 85–94 (2001)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

A.R.H. would like to thank CONACyT for the Ph.D. scholarship granted. The authors also like to thank SIP-IPN (projects 20170509 and 20170630) and BEIFI-IPN granted, and CNMN-IPN for characterization techniques. E.M.A.E., M.E.M.R., and A.E.M. thank the SNI for the distinction of the membership and the stipend received.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. M. Arce Estrada.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Romero Hernández, A., Manríquez, M.E., Ezeta Mejia, A. et al. Shape Effect of AuPd Core-Shell Nanostructures on the Electrocatalytical Activity for Oxygen Reduction Reaction in Acid Medium. Electrocatalysis 9, 752–761 (2018). https://doi.org/10.1007/s12678-018-0486-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12678-018-0486-y

Keywords

Navigation