Skip to main content
Log in

Metal-enhanced Singlet Oxygen Generation: A Consequence of Plasmon Enhanced Triplet Yields

  • Short Communication
  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

Abstract

In this Rapid Communication, we report the first observation of Metal-Enhanced singlet oxygen generation (ME1O2). Rose Bengal in close proximity to Silver Island Films (SiFs) can generate more singlet oxygen, a three-fold increase observed, as compared to an identical glass control sample but containing no silver. The enhanced absorption of the photo-sensitizer, due to coupling to silver surface plasmons, facilitates enhanced singlet oxygen generation. The singlet oxygen yield can potentially be adjusted by modifying the choice of MEF (Metal-Enhanced Fluorescence) & MEP (Metal Enhance Phosphorescence) parameters, such as distance dependence for plasmon coupling and wavelength emission of the coupling fluorophore. This is a most helpful observation in understanding the interactions between plasmons and lumophores, and this approach may well be of significance for singlet oxygen based clinical therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Abbreviations

GR:

Green sensor

MEF:

Metal Enhanced Fluorescence

MEP:

Metal Enhanced Phosphorescence

ME1O2 :

Metal Enhanced Singlet Oxygen Generation

PDT:

Photodynamic Therapy

RB:

Rose Bengal

SiFs:

Silver Island Films

UV:

Ultraviolet

References

  1. Warner JW, Berry RS (1985) Hund’s rule. Nature 313:160

    Article  Google Scholar 

  2. Boyd JR (1984) A quantum mechanical explanation for Hund’s multiplicity rule. Nature 310:480–481

    Article  CAS  Google Scholar 

  3. Claude S, Reinhard S (2003) Physical mechanisms of generation and deactivation of singlet oxygen. Chem Rev 103:1685–1757

    Article  CAS  Google Scholar 

  4. Maria CD, Robert JC (2002) Photosensitized singlet oxygen and its applications. Coordin Chem Rev 233–234:351–371

    Google Scholar 

  5. MacDonald IJ, Dougherty TJ (2001) Basic principles of photodynamic therapy. J Porphyr Phthalocyanines 5(20):105–129

    Article  CAS  Google Scholar 

  6. Dolmans DE, Fukumura D, Jain RK (2003) Photodynamic therapy for cancer. Nat Rev Cancer 3(5):380–387

    Article  CAS  Google Scholar 

  7. Wilson BC (2002) Photodynamic therapy for cancer: principles. Can J Gastroenterol 16(6):393–396

    PubMed  Google Scholar 

  8. Vrouenraets MB, Visser GWM, Snow GB, Van Dongen GAMS (2003) Basic principles, applications in oncology and improved selectivity of photodynamic therapy. Anticancer Res 23:505–522

    PubMed  CAS  Google Scholar 

  9. Bonnett R (1995) Photosensitizer of the porphyrin and phthalocyanine series for photodynamic therapy. Chem Soc Rev 24(1):19–33

    Article  CAS  Google Scholar 

  10. Zhang Y, Aslan K, Malyn SN, Geddes CD (2006) Metal-enhanced phosphorescence (MEP). Chem Phys Lett 427:432–437

    Article  CAS  Google Scholar 

  11. Zhang Y, Aslan K, Previte MJR, Malyn SN, Geddes CD (2006) Metal-enhanced phosphorescence: interpretation in terms of triplet-coupled radiating plasmons. J Phys Chem B 110:25108–25114

    Article  CAS  Google Scholar 

  12. Geddes CD, Aslan K, Gryczynski I, Malicka J, Lakowicz JR (2004) Noble metal nanostructures for metal-enhanced fluorescence. In: Review chapter for annual reviews in fluorescence. Plenum, New York, USA, p 365

    Google Scholar 

  13. Francis W, Phillip HW, Alberta BR (1993) Quantum yields for the photosensitized formation of the lowest electronically excited singlet state of molecular oxygen in solution. J Phys Chem Ref Data 22:13–262

    Article  Google Scholar 

  14. Aslan K, Gryczynski I, Malicka J, Matveeva E, Lakowicz JR, Geddes CD (2005) Metal-enhanced fluorescence: an emerging tool in biotechnology. Curr Opin Biotechnol 16(1):55–62

    Article  PubMed  CAS  Google Scholar 

  15. Rota C, Chignell CF, Mason RP (1999) Evidence for free radical formation during the oxidation of 2-7-dichlorofluorescein to the fluorescent dye 2-7-dichlorofluorescein by horseradish peroxidase: possible implications for oxidative stress measurements. Free Radic Biol Med 27:873–881

    Article  PubMed  CAS  Google Scholar 

  16. Aslan K, Lakowicz JR, Szmacinski H, Geddes CD (2004) Metal-enhanced fluorescence solution-based sensing platform. J Fluoresc 14(6):677–679

    Article  CAS  Google Scholar 

  17. Geddes CD, Aslan K, Gryczynski I, Malicka J, Lakowicz JR (2005) Radiative decay engineering (RDE). In: Topics in fluorescence spectroscopy. Plenum, New York, USA, p 405

    Google Scholar 

  18. Franck F, Kelly SM, Ben W, Barry LS, Polly LA, Steven MH, Roger B, Paul DB, Peter DW, Helen JR (2004) Silver nanoparticle and polymeric medical devices: a new approach to prevent of infection. J Antimicrob Chemother 54(6):1019–1024

    Article  Google Scholar 

  19. Aslan K, Wu M, Lakowicz JR, Geddes, CD (2007). Fluorescent core-shell Ag@SiO2 nanocomposites for metal enhanced fluorescence and single nanoparticle sensing platforms. J Am Chem Soc 129(6):1524–1525

    Article  PubMed  CAS  Google Scholar 

  20. Clennan EL (2000). New mechanistic and synthetic aspects of singlet oxygen chemistry. Tetrahedron 56:9151–9179

    Article  CAS  Google Scholar 

  21. Aslan K, Malyn SN, Geddes CD (2007) Metal-enhanced fluorescence from large gold colloids on planar surfaces: angular dependent emission. J Fluoresc 7:7–13

    Google Scholar 

Download references

Acknowledgement

The authors would like to thank UMBI for salary support. This work was also partially supported (partial salary support to CDG) by the NIH, NCRR RR008119.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chris D. Geddes.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, Y., Aslan, K., Previte, M.J.R. et al. Metal-enhanced Singlet Oxygen Generation: A Consequence of Plasmon Enhanced Triplet Yields. J Fluoresc 17, 345–349 (2007). https://doi.org/10.1007/s10895-007-0196-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10895-007-0196-y

Keywords

Navigation