Skip to main content

Advertisement

Log in

Current research trends and prospects among the various materials and designs used in lithium-based batteries

  • Original Paper
  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

Increasing energy consumption, shortages of fossil fuels, and concerns about the environmental impact of energy use, especially emissions of carbon dioxide, give fresh impetus to the development of renewable energy sources. With the advent of renewable energy, it is now indispensable that efficient energy storage systems have to be developed. One of the most promising storage systems to be employed in stationary energy storage applications are lithium-based batteries (LIB), mainly due to their high energy density, high power, and nearly 100 % efficiency. Within the scope of this paper, we carry out a patent search using the patent database PatBase® to assess the development status of LIB technology. The analysis of the generated patent sample reveals disproportionately high growth rates in LIB patent applications over the last years compared to other selected energy-related technologies. Breaking down patent application growth by the different components of LIB shows the principal drivers of growth. The purpose of this paper is to provide current research trends and prospects for the main LIB materials and designs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Notes

  1. For further Information on LIB see: [9].

  2. For details see: http://www.epo.org/searching/essentials/patent-families.html, accessed November 2012.

  3. These patent family applications are subsequently termed as patent families, whereby each patent family consists of at least one patent application without regard to the status of being granted later on.

  4. Source: PatBase®, July 2012.

  5. For details see: [68].

References

  1. EEA (2008) Energy and environment report 2008. European Environment Agency (EEA), Copenhagen

  2. BMU (2011) Renewable Energy Sources in Figures. Federal ministry for the Environment, nature Conservation and nuclear Safety (BMU), Berlin

  3. Winter M, Brodd RJ (2004) What are batteries, fuel cells, and supercapacitors? Chem Rev 104(10):4245–4270. doi:10.1021/cr020730k

    Article  CAS  Google Scholar 

  4. Hall PJ, Bain EJ (2008) Energy-storage technologies and electricity generation. Energy Policy 36(12):4352–4355

    Article  Google Scholar 

  5. Winter M, Passerini S (2011) Lithium ion batteries as key component for energy storage in automotive and stationary applications. In: Telecommunications energy conference (INTELEC), 2011 IEEE 33rd International, 9–13 Oct, pp 1–3. doi:10.1109/intlec.2011.6099839

  6. Winter M, Besenhard JO (1999) Wiederaufladbare Batterien. Chem unserer Zeit 33(6):320–332. doi:10.1002/ciuz.19990330603

    Article  CAS  Google Scholar 

  7. Beaudin M, Zareipour H, Schellenberglabe A, Rosehart W (2010) Energy storage for mitigating the variability of renewable electricity sources: an updated review. Energy Sustain Dev 14(4):302–314

    Article  Google Scholar 

  8. Besenhard JO, Winter M (1998) Insertion reactions in advanced electrochemical energy storage. Pure Appl Chem 70:603–608. doi:10.1351/pac199870030603

    Article  CAS  Google Scholar 

  9. Linden D, Reddy TB (2002) Handbook of batteries, 3rd edn. McGraw-Hill, New York

    Google Scholar 

  10. Debackere K, Verbeek A, Luwel M, Zimmermann E (2002) Measuring progress and evolution in science and technology—II: the multiple uses of technometric indicators. Int J Manag Rev 4(3):213–231

    Article  Google Scholar 

  11. Bregonje M (2005) Patents: a unique source for scientific technical information in chemistry related industry? World Patent Inf 27(4):309–315

    Article  CAS  Google Scholar 

  12. Ernst H (1997) The use of patent data for technological forecasting: the diffusion of CNC-technology in the machine tool industry. Small Bus Econ 9(4):361–381. doi:10.1023/a:1007921808138

    Article  Google Scholar 

  13. Merino DN (1990) Development of a technological S-curve for tire cord textiles. Technol Forecast Soc Chang 37(3):275–291

    Article  Google Scholar 

  14. Ernst H (1995) Patenting strategies in the German mechanical engineering industry and their relationship to company performance. Technovation 15(4):225–240

    Article  Google Scholar 

  15. Griliches Z, Hall BH, Pakes A (1991) R&D, patents, and market value revisited: is there a second (technological opportunity) factor? Econ Innov New Technol 1(3):183–201. doi:10.1080/10438599100000001

    Article  Google Scholar 

  16. Schwander P (2000) An evaluation of patent searching resources: comparing the professional and free on-line databases. World Patent Inf 22(3):147–165

    Article  CAS  Google Scholar 

  17. Tseng Y-H, Lin C-J, Lin Y-I (2007) Text mining techniques for patent analysis. Inf Process Manag 43(5):1216–1247

    Article  Google Scholar 

  18. Yoshio M, Brodd RJ, Kozawa A (2009) Lithium-ion batteries: science and technologies. Springer, New York

    Book  Google Scholar 

  19. Marom R, Amalraj SF, Leifer N, Jacob D, Aurbach D (2011) A review of advanced and practical lithium battery materials. J Mater Chem 21(27):9938–9954. doi:10.1039/c0jm04225k

    Article  CAS  Google Scholar 

  20. The High-power Lithium-ion (2012) Cadex Electronics Inc. (Cadex)—Battery University. http://batteryuniversity.com/learn/article/the_high_power_lithium_ion/. Accessed 8 Nov 2012

  21. Goodenough JB, Mizuchima K (1980) Electrochemical cell with new fast ion conductors. United States Patent US4302518, 1981/11/24

  22. Ohzuku T, Brodd RJ (2007) An overview of positive-electrode materials for advanced lithium-ion batteries. J Power Sources 174(2):449–456

    Article  CAS  Google Scholar 

  23. Whittingham MS (2004) Lithium batteries and cathode materials. Chem Rev 104(10):4271–4301. doi:10.1021/Cr020731c

    Article  CAS  Google Scholar 

  24. Xu B, Qian D, Wang Z, Meng YS (2012) Recent progress in cathode materials research for advanced lithium ion batteries. Mater Sci Eng 73(5–6):51–65

    CAS  Google Scholar 

  25. Yamaki J (2009) Secondary batteries—lithium rechargeable systems—lithium-ion. Overview. Elsevier, Amsterdam

    Google Scholar 

  26. Belharouak I, Sun YK, Liu J, Amine K (2003) Li(Ni1/3Co1/3Mn1/3)O2 as a suitable cathode for high power applications. J Power Sources 123(2):247–252

    Article  CAS  Google Scholar 

  27. Etacheri V, Marom R, Elazari R, Salitra G, Aurbach D (2011) Challenges in the development of advanced Li-ion batteries: a review. Energy Environ Sci 4(9):3243–3262

    Article  CAS  Google Scholar 

  28. Kim J, Hong Y, Ryu KS, Kim MG, Cho J (2006) Washing effect of a LiNi0.83Co0.15Al0.02O2 cathode in water. Electrochem Solid-State Lett 9:A19–A23. doi:10.1149/1.2135427

    Article  CAS  Google Scholar 

  29. Zhuang GV, Chen G, Shim J, Song X, Ross PN, Richardson TJ (2004) Li2CO3 in LiNi0.8Co0.15Al0.05O2 cathodes and its effects on capacity and power. J Power Sources 134(2):293–297. doi:10.1016/j.jpowsour.2004.02.030

    Article  CAS  Google Scholar 

  30. Ohzuku T, Makimura Y (2001) Layered lithium insertion material of LiCo1/3Ni1/3Mn1/3O2 for lithium-ion batteries. Chem Lett 30(7):642–643

    Article  Google Scholar 

  31. Li J, Klöpsch R, Stan MC, Nowak S, Kunze M, Winter M, Passerini S (2011) Synthesis and electrochemical performance of the high voltage cathode material Li[Li0.2Mn0.56Ni0.16Co0.08]O2 with improved rate capability. J Power Sources 196(10):4821–4825. doi:10.1016/j.jpowsour.2011.01.006

    Article  CAS  Google Scholar 

  32. Lu Z, Dahn JR (2001) Cathode Compositions for Lithium-ion batteries. United States Patent US6964828, 2005/15/11

  33. Thackeray MM, Johnson CS, Khalil A, Jaekook K (2001) Lithium metal oxide electrodes for lithium cells and batteries. United States Patent US20020136954, 2002/26/09

  34. Thackeray MM, Kang S-H, Johnson CS, Vaughey JT, Benedek R, Hackney SA (2007) Li2MnO3-stabilized LiMO2 (M = Mn, Ni, Co) electrodes for lithium-ion batteries. J Mater Chem 17(30):3112–3125

    Article  CAS  Google Scholar 

  35. Li J, Klöpsch R, Nowak S, Kunze M, Winter M, Passerini S (2011) Investigations on cellulose-based high voltage composite cathodes for lithium ion batteries. J Power Sources 196(18):7687–7691. doi:10.1016/j.jpowsour.2011.04.030

    Article  CAS  Google Scholar 

  36. Amatucci G, Tarascon J-M (2002) Optimization of insertion compounds such as LiMn2O4 for Li-ion batteries. J Electrochem Soc 149(12):K31–K46. doi:10.1149/1.1516778

    Article  CAS  Google Scholar 

  37. Thackeray MM, Goodenough JB (1982) Solid state cell wherein an anode, solid electrolyte and cathode each comprise a cubic-close-packed framework structure. United States Patent US4507371, 1985/26/03

  38. Zhong Q, Bonakdarpour A (1996) High voltage insertion compounds for lithium batteries. United States Patent US5631104, 1997/05/20

  39. Goodenough JB, Padhi AK, Nanjundaswamy KS, Masquelier C (1997) Cathode materials for secondary (rechargeable) lithium batteries. United States Patent US5910382, 1999/06/08

  40. Padhi AK, Nanjundaswamy KS, Goodenough JB (1997) Phospho-olivines as positive-electrode materials for rechargeable lithium batteries. J Electrochem Soc 144(4):1188–1194. doi:10.1149/1.1837571

    Article  CAS  Google Scholar 

  41. Padhi AK, Nanjundaswamy KS, Masquelier C, Okada S, Goodenough JB (1997) Effect of structure on the Fe3+/Fe2+ redox couple in iron phosphates. J Electrochem Soc 144(5):1609–1613. doi:10.1149/1.1837649

    Article  CAS  Google Scholar 

  42. Winter M, Besenhard JO, Spahr ME, Novák P (1998) Insertion electrode materials for rechargeable lithium batteries. Adv Mater 10(10):725–763. doi:10.1002/(sici)1521-4095(199807)10:10<725:aid-adma725>3.0.co;2-z

    Article  CAS  Google Scholar 

  43. Besenhard JO, Winter M (2002) Advances in battery technology: rechargeable magnesium batteries and novel negative-electrode materials for lithium ion batteries. ChemPhysChem 3:155–159. doi:10.1002/1439-7641(20020215)3:2<155:aid-cphc155>3.0.co;2-s

    Article  CAS  Google Scholar 

  44. Hayner CM, Zhao X, Kung HH (2012) Materials for rechargeable lithium-ion batteries. Annu Rev Chem Biomol Eng 3(1):445–471. doi:10.1146/annurev-chembioeng-062011-081024

    Article  CAS  Google Scholar 

  45. Placke T, Bieker P, Lux SF, Fromm O, Meyer H-W, Passerini S, Winter M (2012) Dual-ion cells based on anion intercalation into graphite from ionic liquid-based electrolytes. Z Phys Chem 226(5–6):391–407. doi:10.1524/zpch.2012.0222

    Article  CAS  Google Scholar 

  46. Placke T, Fromm O, Lux SF, Bieker P, Rothermel S, Meyer H-W, Passerini S, Winter M (2012) Reversible intercalation of bis(trifluoromethanesulfonyl)imide anions from an ionic liquid electrolyte into graphite for high performance dual-ion cells. J Electrochem Soc 159(11):A1755–A1765. doi:10.1149/2.011211jes

    Article  CAS  Google Scholar 

  47. Placke T, Siozios V, Schmitz R, Lux SF, Bieker P, Colle C, Meyer HW, Passerini S, Winter M (2012) Influence of graphite surface modifications on the ratio of basal plane to “non-basal plane” surface area and on the anode performance in lithium ion batteries. J Power Sources 200:83–91

    Article  CAS  Google Scholar 

  48. Novák P, Scheifele W, Winter M, Haas O (1997) Graphite electrodes with tailored porosity for rechargeable ion-transfer batteries. J Power Sources 68(2):267–270

    Article  Google Scholar 

  49. Zheng T, Xue JS, Dahn JR (1996) Lithium insertion in hydrogen-containing carbonaceous materials. Chem Mater 8(2):389–393. doi:10.1021/cm950304y

    Article  CAS  Google Scholar 

  50. Kaskhedikar NA, Maier J (2009) Lithium storage in carbon nanostructures. Adv Mater 21:2664–2680. doi:10.1002/adma.200901079

    Article  CAS  Google Scholar 

  51. Dey AN (1971) Electrochemical alloying of lithium in organic electrolytes. J Electrochem Soc 118(10):1547–1549. doi:10.1149/1.2407783

    Article  CAS  Google Scholar 

  52. Yoshio M, Wang H, Fukuda K, Umeno T, Dimov N, Ogumi Z (2002) Carbon-coated Si as a lithium-ion battery anode material. J Electrochem Soc 149:A1598–A1603. doi:10.1149/1.1518988

    Article  CAS  Google Scholar 

  53. Liu W-R, Yen Y-C, Wu H-C, Winter M, Wu N-L (2009) Nano-porous SiO/carbon composite anode for lithium-ion batteries. J Appl Electrochem 39:1643–1649. doi:10.1007/s10800-009-9854-x

    Article  CAS  Google Scholar 

  54. Park C-M, Kim J-H, Kim H, Sohn H-J (2010) Li-alloy based anode materials for Li secondary batteries. Chem Soc Rev 39(8):3115–3141

    Article  CAS  Google Scholar 

  55. Idota Y (1993) Nonaqueous secondary battery. United States Patent US5478671, 1995/12/26

  56. Yang J, Takeda Y, Imanishi N, Capiglia C, Xie JY, Yamamoto O (2002) SiOx-based anodes for secondary lithium batteries. Solid State Ionics 152–153:125–129

    Article  Google Scholar 

  57. Winter M, Besenhard JO, Albering JH, Yang J, Wachtler M (1998) Lithium storage alloys as anode materials in lithium ion batteries. Prog Batter Battery Mater 17:208–213

    CAS  Google Scholar 

  58. Winter M, Appel WK, Evers B, Hodal T, Möller K-C, Schneider I, Wachtler M, Wagner MR, Wrodnigg GH, Besenhard JO (2001) Studies on the anode/electrolyte interfacein lithium ion batteries. Monatsh Chem 132(4):473–486. doi:10.1007/s007060170110

    Article  CAS  Google Scholar 

  59. Winter M (2009) The solid electrolyte interphase—the most important and the least understood solid electrolyte in rechargeable Li batteries. Z Phys Chem 223(10–11):1395–1406. doi:10.1524/zpch.2009.6086

    Article  CAS  Google Scholar 

  60. Xu K (2004) Nonaqueous liquid electrolytes for lithium-based rechargeable batteries. Chem Rev 104(10):4303–4417. doi:10.1021/Cr030203g

    Article  CAS  Google Scholar 

  61. Aurbach D, Talyosef Y, Markovsky B, Markevich E, Zinigrad E, Asraf L, Gnanaraj JS, Kim H-J (2004) Design of electrolyte solutions for Li and Li-ion batteries: a review. Electrochim Acta 50(2–3):247–254

    Article  CAS  Google Scholar 

  62. Dominique G, Tarascon J-M (1992) High-voltage-stable electrolytes for Li1+x Mn2O4/carbon secondary batteries. United States Patent US19920871855, 1993/03/09

  63. Xu M, Liu Y, Li B, Li W, Li X, Hu S (2012) Tris (pentafluorophenyl) phosphine: an electrolyte additive for high voltage Li-ion batteries. Electrochem Commun 18:123–126

    Article  CAS  Google Scholar 

  64. Manthiram A (2011) Materials challenges and opportunities of lithium ion batteries. J Phys Chem Lett 2(3):176–184. doi:10.1021/jz1015422

    Article  CAS  Google Scholar 

  65. Zhang SS (2006) A review on electrolyte additives for lithium-ion batteries. J Power Sources 162(2):1379–1394. doi:10.1016/j.jpowsour.2006.07.074

    Article  CAS  Google Scholar 

  66. Fergus JW (2010) Ceramic and polymeric solid electrolytes for lithium-ion batteries. J Power Sources 195(15):4554–4569

    Article  CAS  Google Scholar 

  67. Girishkumar G, McCloskey B, Luntz AC, Swanson S, Wilcke W (2010) Lithium–air battery: promise and challenges. J Phys Chem Lett 1(14):2193–2203. doi:10.1021/jz1005384

    Article  CAS  Google Scholar 

  68. Lewandowski A, Świderska-Mocek A (2009) Ionic liquids as electrolytes for Li-ion batteries—an overview of electrochemical studies. J Power Sources 194(2):601–609

    Article  CAS  Google Scholar 

  69. CALSTART (2010) Energy storage compendium: batteries for electric and hybrid heavy duty vehicles. CALSTART, Pasadena

    Google Scholar 

  70. Jossen A, Weydanz W (2006) Moderne Akkumulatoren richtig einsetzen. Reichardt Verlag, Leipheim und München

    Google Scholar 

  71. Lee JH, Lee HM, Ahn S (2003) Battery dimensional changes occurring during charge/discharge cycles—thin rectangular lithium ion and polymer cells. J Power Sources 119–121:833–837

    Article  Google Scholar 

  72. von Delft S, Gelhard C, Leker J (2012) Innovating in converging industries: challenges in the field of E-mobility. In: Paper presented at the Kraftwerk Batterie, Münster

  73. Van den Bossche P, Vergels F, Van Mierlo J, Matheys J, Van Autenboer W (2006) SUBAT: an assessment of sustainable battery technology. J Power Sources 162(2):913–919

    Article  Google Scholar 

Download references

Acknowledgments

We thank Dr. René Schmitz for helpful discussions and comments on this project. Financial support from the German Research Foundation (DFG) and the NRW Graduate School of Chemistry is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ralf Wagner or Martin Winter.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wagner, R., Preschitschek, N., Passerini, S. et al. Current research trends and prospects among the various materials and designs used in lithium-based batteries. J Appl Electrochem 43, 481–496 (2013). https://doi.org/10.1007/s10800-013-0533-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10800-013-0533-6

Keywords

Navigation