Skip to main content
Log in

Electron-electron interactions in monolayer graphene quantum capacitors

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

We demonstrate the effects of electron-electron (e-e) interactions in monolayer graphene quantum capacitors. Ultrathin yttrium oxide showed excellent performance as the dielectric layer in top-gate device geometry. The structure and dielectric constant of the yttrium oxide layers have been carefully studied. The inverse compressibility retrieved from the quantum capacitance agreed fairly well with the theoretical predictions for the e-e interactions in monolayer graphene at different temperatures. We found that electron-hole puddles played a significant role in the low-density carrier region in graphene. By considering the temperature-dependent charge fluctuation, we established a model to explain the round-off effect originating from the e-e interactions in monolayer graphene near the Dirac point.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Wallace, P. R. The band theory of graphite. Phys. Rev. 1947, 71, 622–634.

    Article  CAS  Google Scholar 

  2. McClure, J. W. Band structure of graphite and de Haas-van Alphen effect. Phys. Rev. 1957, 108, 612–618.

    Article  CAS  Google Scholar 

  3. Castro Neto, A. H.; Guinea, F.; Peres, N. M. R.; Novoselov, K. S.; Geim, A. K. The electronic properties of graphene. Rev. Mod. Phys. 2009, 81, 109–162.

    Article  CAS  Google Scholar 

  4. Das Sarma, S.; Adam, S.; Hwang, E. H.; Rossi, E. Electronic transport in two-dimensional graphene. Rev. Mod. Phys. 2011, 83, 407–470.

    Article  Google Scholar 

  5. Geim, A. K.; Novoselov, K. S. The rise of graphene. Nat. Mater. 2007, 6, 183–191.

    Article  CAS  Google Scholar 

  6. Barlas, Y.; Pereg-Barnea, T.; Polini, M.; Asgari, R.; MacDonald, A. H. Chirality and correlations in graphene. Phys. Rev. Lett. 2007, 98, 236601.

    Article  Google Scholar 

  7. Sheehy, D. E.; Schmalian, J. Quantum critical scaling in graphene. Phys. Rev. Lett. 2007, 99, 226803.

    Article  Google Scholar 

  8. Hwang, E. H.; Hu, B. Y.-K.; Sarma, S. D. Density dependent exchange contribution to ∂µ /∂n and compressibility in graphene. Phys. Rev. Lett. 2007, 99, 226801.

    Article  CAS  Google Scholar 

  9. Martin, J.; Akerman, N.; Ulbricht, G.; Lohmann, T.; Smet, J. H.; von Klitzing, K.; Yacoby, A. Observation of electron-hole puddles in graphene using a scanning single-electron transistor. Nat. Phys. 2008, 4, 144–148.

    Article  CAS  Google Scholar 

  10. Elias, D. C.; Gorbachev, R. V.; Mayorov, A. S.; Morozov, S. V.; Zhukov, A. A.; Blake, P.; Ponomarenko, L. A.; Grigorieva, I. V.; Novoselov, K. S.; Guinea, F. et al. Dirac cones reshaped by interaction effects in suspended graphene. Nat. Phys. 2011, 7, 701–704.

    Article  CAS  Google Scholar 

  11. Chae, J.; Jung, S.; Young, A.; Dean, C.; Wang, L.; Gao, Y. D.; Watanabe, K.; Taniguchi, T.; Hone, J.; Shepard, K. et al. Renormalization of the graphene dispersion velocity determined from scanning tunneling spectroscopy. Phys. Rev. Lett. 2012, 109, 116802.

    Article  Google Scholar 

  12. Kotov, V. N.; Uchoa, B.; Pereira, V. M.; Guinea, F.; Castro Neto, A. H. C. Electron-electron interactions in graphene: Current status and perspectives. Rev. Mod. Phys. 2012, 84, 1067–1125.

    Article  CAS  Google Scholar 

  13. Ponomarenko, L. A.; Yang, R.; Gorbachev, R. V.; Blake, P.; Katsnelson, M. I.; Novoselov, K. S.; Geim, A. K. Density of states and zero landau level probed through capacitance of graphene. Phys. Rev. Lett. 2010, 105, 136801.

    Article  CAS  Google Scholar 

  14. Young, A. F.; Dean, C. R.; Meric, I.; Sorgenfrei, S.; Ren, H.; Watanabe, K.; Taniguchi, T.; Hone, J.; Shepard, K. L.; Kim, P. Electronic compressibility of layer-polarized bilayer graphene. Phys. Rev. B 2012, 85, 235458.

    Article  Google Scholar 

  15. Henriksen, E. A.; Eisenstein, J. P. Measurement of the electronic compressibility of bilayer graphene. Phys. Rev. B 2010, 82, 041412.

    Article  Google Scholar 

  16. Chen, Z. H.; Appenzeller, J. Mobility extraction and quantum capacitance impact in high performance graphene field-effect transistor devices. Int. El. Devices Meet. 2008, 509–512.

    Google Scholar 

  17. Xia, J. L.; Chen, F.; Li, J. H.; Tao, N. J. Measurement of the quantum capacitance of graphene. Nat. Nanotechnol. 2009, 4, 505–509.

    Article  CAS  Google Scholar 

  18. Xu, H. L.; Zhang, Z. Y.; Wang, Z. X.; Wang, S.; Hang, X. L.; Peng, L. M. Quantum capacitance limited vertical scaling of graphene field-effect transistor. ACS Nano 2011, 5, 2340–2347.

    Article  CAS  Google Scholar 

  19. Li, W.; Chen, X. L.; Wang, L.; He, Y. H.; Wu, Z. F.; Cai, Y.; Zhang, M. W.; Wang, Y.; Han, Y.; Lortz, R. W. et al. Density of states and its local fluctuations determined by capacitance of strongly disordered graphene. Sci. Rep. 2013, 3, 1772.

    CAS  Google Scholar 

  20. He, Y. H.; Wang, L.; Chen, X. L.; Wu, Z. F.; Li, W.; Cai, Y.; Wang, N. Modifying electronic transport properties of graphene by electron beam irradiation. Appl. Phys. Lett. 2011, 99, 033109.

    Article  Google Scholar 

  21. Wang, Z. X.; Xu, H. L.; Zhang, Z. Y.; Wang, S.; Ding, L.; Zeng, Q. S.; Yang, L. J.; Pei, T. A.; Liang, X. L.; Gao, M. et al. Growth and performance of yttrium oxide as an ideal high-kappa gate dielectric for carbon-based electronics. Nano Lett. 2010, 10, 2024–2030.

    Article  CAS  Google Scholar 

  22. Li, W.; He, Y. H.; Wang, L.; Ding, G. H.; Zhang, Z. Q.; Lortz, R. W.; Sheng, P.; Wang, N. Electron localization in metal-decorated graphene. Phys. Rev. B 2011, 84, 045431.

    Article  Google Scholar 

  23. Klein, P. H.; Croft, W. J. Thermal conductivity, diffusivity, and expansion of Y2O3, Y3Al5O12, and LaF3 in the range 77°–300° K. J. Appl. Phys. 1967, 38, 1603.

    Article  CAS  Google Scholar 

  24. Tsutsumi, T. Dielectric properities of Y2O3 thin films prepaerd by vacuum evaporation. Jpn. J. Appl. Phys. 1969, 9, 735–739.

    Article  Google Scholar 

  25. Abergel, D. S. L. Compressibility of graphene. Solid State Commun. 2012, 152, 1383–1389.

    Article  CAS  Google Scholar 

  26. Peres, N. M. R.; Guinea, F.; Castro Neto, A. H. Coulomb interactions and ferromagnetism in pure and doped graphene. Phys. Rev. B 2005, 72, 174406.

    Article  Google Scholar 

  27. Gibertini, M.; Tomadin, A.; Polini, M.; Fasolino, A.; Katsnelson, M. I. Electron density distribution and screening in rippled graphene sheets. Phys. Rev. B 2010, 81, 125437.

    Article  Google Scholar 

  28. Gibertini, M.; Tomadin, A.; Guinea, F.; Katsnelson, M. I.; Polini, M. Electron-hole puddles in the absence of charged impurities. Phys. Rev. B 2012, 85, 201405.

    Article  Google Scholar 

  29. Adam, S.; Hwang, E. H.; Galitski, V. M.; Das Sarma, S. A self-consistent theory for graphene transport. P. Natl. Acad. Sci. USA 2007, 104, 18392–18397.

    Article  CAS  Google Scholar 

  30. Hwang, E.; Adam, S.; Sarma, S. Carrier transport in two-dimensional graphene layers. Phys. Rev. Lett. 2007, 98, 186806.

    Google Scholar 

  31. Cho, S.; Fuhrer, M. S. Charge transport and inhomogeneity near the minimum conductivity point in graphene. Phys. Rev. B 2008, 77, 081402.

    Article  Google Scholar 

  32. Xu, H. L.; Zhang, Z. Y.; Peng, L. M. Measurements and microscopic model of quantum capacitance in graphene. Appl. Phys. Lett. 2011, 98, 133122.

    Article  Google Scholar 

  33. Moser, J.; Tao, H.; Roche, S.; Alzina, F.; Sotomayor Torres, C. M.; Bachtold, A. Magnetotransport in disordered graphene exposed to ozone: From weak to strong localization. Phys. Rev. B 2010, 81, 205445.

    Article  Google Scholar 

  34. Kim, S.; Jo, I.; Nah, J.; Yao, Z.; Banerjee, S. K.; Tutuc, E. Coulomb drag of massless fermions in graphene. Phys. Rev. B 2011, 83, 161401.

    Article  Google Scholar 

  35. Li, Q. Z.; Hwang, E. H.; Das Sarma, S. Disorder-induced temperature-dependent transport in graphene: Puddles, impurities, activation, and diffusion. Phys. Rev. B 2011, 84, 115442.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ning Wang.

Additional information

Xiaolong Chen and Lin Wang contributed equally to this work and are co-first authors.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, X., Wang, L., Li, W. et al. Electron-electron interactions in monolayer graphene quantum capacitors. Nano Res. 6, 619–626 (2013). https://doi.org/10.1007/s12274-013-0338-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-013-0338-2

Keywords

Navigation