Skip to main content
Log in

Nanowire-composite based flexible thermoelectric nanogenerators and self-powered temperature sensors

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

We have developed a flexible thermoelectric nanogenerator (TENG) that is based on a Te-nanowire/poly(3-hexyl thiophene) (P3HT) polymer composite as the thermoelectric material with a positive Seebeck coefficient of 285 μV/K. A linear relationship between the output voltage of TENG and the temperature difference across the device was observed. Under a temperature difference of 55 K, two TENGs can provide an output voltage of 38 mV in serial connection, or a current density exceeding 32 nA/mm2 in parallel connection. We demonstrated that the flexible TENG can be used as a wearable energy harvester by using human body temperature as the energy source. In addition, the TENG can also be used as a self-powered temperature sensor with a response time of 17 s and a reset time of 9 s. The detection sensitivity of the sensor can reach 0.15 K in ambient atmosphere.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bell, L. E. Cooling, heating, generating power, and recovering waste heat with thermoelectric systems. Science 2008, 321, 1457–1461.

    Article  CAS  Google Scholar 

  2. Snyder, G. J.; Toberer, E. S. Complex thermoelectric materials. Nat. Mater. 2008, 7, 105–114.

    Article  CAS  Google Scholar 

  3. Tritt, T. M.; Subramanian, M. A. Thermoelectric materials, phenomena, and applications: A bird’s eye view. MRS Bull. 2006, 31, 188–194.

    Article  Google Scholar 

  4. Vashaee, D.; Shakouri, A. Improved thermoelectric power factor in metal-based superlattices. Phys. Rev. Lett. 2004, 92, 106103.

    Article  Google Scholar 

  5. Kim, W.; Zide, J.; Gossard, A.; Klenov, D.; Stemmer, S.; Shakouri, A.; Majumdar, A. Thermal conductivity reduction and thermoelectric figure of merit increase by embedding nanoparticles in crystalline semiconductors. Phys. Rev. Lett. 2006, 96, 045901.

    Article  Google Scholar 

  6. Ahn, K.; Han, M. K.; He, J. Q.; Androulakis, J.; Ballikaya, S.; Uher, C.; Dravid, V. P.; Kanatzidis, M. G. Exploring resonance levels and nanostructuring in the PbTe-CdTe system and enhancement of the thermoelectric figure of merit. J. Am. Chem. Soc. 2010, 132, 5227–5235.

    Article  CAS  Google Scholar 

  7. See, K. C.; Feser, J. P.; Chen, C. E.; Majumdar, A.; Urban, J. J.; Segalman, R. A. Water-processable polymer-nanocrystal hybrids for thermoelectrics. Nano Lett. 2010, 10, 4664–4667.

    Article  CAS  Google Scholar 

  8. Jood, P.; Mehta, R. J.; Zhang, Y. L.; Peleckis, G.; Wang, X. L.; Siegel, R. W.; Borca-Tasciuc, T.; Dou, S. X.; Ramanath, G. Al-doped zinc oxide nanocomposites with enhanced thermoelectric properties. Nano Lett. 2011, 11, 4337–4342.

    Article  CAS  Google Scholar 

  9. Liang, D.; Yang, H.; Finefrock, S. W.; Wu, Y. Flexible nanocrystal-coated glass fibers for high-performance thermoelectric energy harvesting. Nano Lett. 2012, 12, 2140–2145.

    Article  CAS  Google Scholar 

  10. Yu, C.; Kim, Y. S.; Kim, D.; Grunlan, J. C. Thermoelectric behavior of segregated-network polymer nanocomposites. Nano Lett. 2008, 8, 4428–4432.

    Article  CAS  Google Scholar 

  11. Wang, Z. L. Toward self-powered sensor networks. Nano Today 2010, 5, 512–514.

    Article  Google Scholar 

  12. Xu, S.; Qin, Y.; Xu, C.; Wei, Y. G.; Yang, R.; Wang, Z. L. Self-powered nanowire devices. Nat. Nanotechnol. 2010, 5, 366–373.

    Article  CAS  Google Scholar 

  13. Lee, M.; Bae, J.; Lee, J.; Lee, C. S.; Hong, S.; Wang, Z. L. Self-powered environmental sensor system driven by nanogenerators. Energy Environ. Sci. 2011, 4, 3359–3363.

    Article  CAS  Google Scholar 

  14. Han, W. H.; Zhou, Y. S; Zhang, Y.; Chen, C. Y.; Lin, L.; Wang, X.; Wang, S. H.; Wang, Z. L. Strain-gated piezotronic transistors based on vertical zinc oxide nanowires. ACS nano 2012, 6, 3760–3766.

    Article  CAS  Google Scholar 

  15. Chen, Y. Z.; Liu, T. H.; Chen, C. Y.; Liu, C. H.; Chen, S. Y.; Wu, W. W.; Wang, Z. L.; He, J. H.; Chu, Y. H.; Chueh, Y. L. Taper PbZr0.2Ti0.8O3 nanowire arrays: From controlled growth by pulsed laser deposition to piezopotential measurements. ACS nano 2012, 6, 2826–2832.

    Article  CAS  Google Scholar 

  16. Zhou, Y. S.; Wang, K.; Han, W. H.; Rai, S. C.; Zhang, Y.; Ding, Y.; Pan, C. F.; Zhang, F.; Zhou, W. L.; Wang, Z. L. Vertically aligned CdSe nanowire arrays for energy harvesting and piezotronic devices. ACS nano 2012, 6, 6478–6482.

    Article  CAS  Google Scholar 

  17. Wu, W. W.; Bai, S.; Yuan, M. M.; Qin, Y.; Wang, Z. L.; Jing, T. Lead zirconate titanate nanowire textile nanogenerator for wearable energy-harvesting and self-powered devices. ACS nano 2012, 6, 6231–6235.

    Article  CAS  Google Scholar 

  18. Cui, N. Y.; Wu, W. W.; Zhao, Y.; Bai, S.; Meng, L. X.; Qin, Y.; Wang, Z. L. Magnetic force driven nanogenerators as a noncontact energy harvester and sensor. Nano Lett. 2012, 12, 3701–3705.

    Article  CAS  Google Scholar 

  19. Lee, C. H.; Yi, G. C.; Zuev, Y. M.; Kim, P. Thermoelectric power measurements of wide band gap semiconducting nanowires. Appl. Phys. Lett. 2009, 94, 022106.

    Google Scholar 

  20. He, M.; Ge, J.; Lin, Z. Q.; Feng, X. H.; Wang, X. W.; Lu, H. B.; Yang, Y. L.; Qiu, F. Thermopower enhancement in conducting polymer nanocomposites via carrier energy scattering at the organic-inorganic semiconductor interface. Energy Environ. Sci. 2012, 5, 8351–8358.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhong Lin Wang.

Additional information

These authors contributed equally

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yang, Y., Lin, ZH., Hou, T. et al. Nanowire-composite based flexible thermoelectric nanogenerators and self-powered temperature sensors. Nano Res. 5, 888–895 (2012). https://doi.org/10.1007/s12274-012-0272-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-012-0272-8

Keywords

Navigation