Skip to main content
Log in

Cu2O-Au nanocomposites with novel structures and remarkable chemisorption capacity and photocatalytic activity

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

The decomposition of CuH nanoparticles in aqueous solution has been successfully developed as a novel method for the preparation of Cu2O nanoparticles. In particular, we found that the decomposition of CuH nanoparticles in aqueous solution could be catalyzed by Au colloids, forming Cu2O-Au nanocomposites. The composition and structure of the resulting Cu2O-Au nanocomposites have been characterized in detail by inductively coupled plasma atomic emission spectroscopy, powder X-ray diffraction, N2 adsorption-desorption isotherms, infrared spectroscopy, X-ray photoelectron spectroscopy, scanning electron microscopy and transmission electron microscopy. Their visible-light-driven photocatalytic activity toward various dye molecules has also been investigated. Depending on the Au:Cu ratio, Cu2O-Au nanocomposites exhibit different novel nanostructures including a beautiful flower-like nanostructure that consists of polycrystalline Cu2O, amorphous Cu2O and Au colloids. We propose that the rapidly-generated bubbles of H2 during the course of the catalytic decomposition reaction drive the simultaneously-formed Cu2O to form amorphous curved thin foils and might also act as a template to assemble curved thin foils of amorphous Cu2O, polycrystalline Cu2O and Au colloids into uniform nanostructures. A Cu2O-Au nanocomposite with a Cu:Au ratio of 40 exhibits remarkable chemisorption capacity and visible-light-driven photocatalytic activity towards methyl orange and acid orange 7 and is a promising chemisorption-photocatalysis integrated catalyst. The catalytic decomposition of the metal hydride might open up a new approach for the fabrication of other metal/metal oxide nanocomposites with novel nanostructures and properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Shen, M. Y.; Yokouchi, T.; Koyama, S.; Goto, T. Dynamics associated with Bose-Einstein statistics of orthoexcitons generated by resonant excitations in cuprous oxide. Phys. Rev. B 1997, 56, 13066–13072.

    Article  CAS  Google Scholar 

  2. Rai, B. P. Cuprous oxide solar cells: A review. Solar Cells 1988, 25, 265–272.

    Article  CAS  Google Scholar 

  3. Zhang, J.; Liu, J.; Peng, Q.; Wang, X.; Li, Y. Nearly monodisperse Cu2O and CuO nanospheres: Preparation and applications for sensitive gas sensors. Chem. Mater. 2006, 18, 867–871.

    Article  CAS  Google Scholar 

  4. Poizot, P.; Laruelle, S.; Grugeon, S.; Dupont, L.; Taracon, J. M. Nano-sized transition-metal oxides as negative-electrode materials forlithium-ion batteries. Nature 2000, 407, 496–499.

    Article  CAS  Google Scholar 

  5. Bao, H. Z.; Zhang, W. H.; Shang, D. L.; Hua, Q.; Ma, Y. S.; Jiang, Z. Q.; Yang, J. L.; Huang, W. X. Shape-dependent reducibility of cuprous oxide nanocrystals. J. Phys. Chem. C 2010, 114, 6676–6680.

    Article  CAS  Google Scholar 

  6. Hara, M.; Kondo, T.; Komoda, M.; Ikeda, S.; Shinohara, K.; Tanaka, A.; Kondo, J. N.; Domen, K. Cu2O as a photocatalyst for overall water splitting under visible light irradiation. Chem. Commun. 1998, 357–358.

  7. de Jongh, P. E.; Vanmaekelbergh, D.; Kelly, J. J. Cu2O: A catalyst for the photochemical decomposition of water? Chem. Commun. 1999, 1069–1070.

  8. Hara, M.; Komoda, M.; Hasei, H.; Yashima, M.; Ikeda, S.; Takata, T.; Kondo, J. N.; Domen, K. A study of mechano-catalysts for overall water splitting. J. Phys. Chem. B 2000, 104, 780–785.

    Article  CAS  Google Scholar 

  9. Walker, A. V.; Yates, J. T. Jr. Does cuprous oxide photosplit water? J. Phys. Chem. B 2000, 104, 9038–9043.

    Article  CAS  Google Scholar 

  10. Kuo, C. -H.; Huang, M. H. Facile synthesis of Cu2O nanocrystals with systematic shape evolution from cubic to octahedral structures. J. Phys. Chem. C 2008, 112, 18355–18360.

    CAS  Google Scholar 

  11. Zhang, D. -F.; Zhang, H.; Guo, L.; Zheng, K.; Han, X. -D.; Zhang, Z. Delicate control of crystallographic facet-oriented Cu2O nanocrystals and the correlated adsorption ability. J. Mater. Chem. 2009, 19, 5220–5225.

    Article  CAS  Google Scholar 

  12. Ho, J. Y.; Huang, M. H. Synthesis of submicrometer-sized Cu2O crystals with morphological evolution from cubic to hexapod structures and their comparative photocatalytic activity. J. Phys. Chem. C 2009, 113, 14159–14164.

    Article  CAS  Google Scholar 

  13. Zheng, Z.; Huang, B.; Wang, Z.; Guo, M.; Qin, X.; Zhang, X.; Wang, P.; Dai, Y. Crystal faces of Cu2O and their stabilities in photocatalytic reactions. J. Phys. Chem. C 2009, 113, 14448–14453.

    Article  CAS  Google Scholar 

  14. Zhang, Y.; Deng, B.; Zhang, T. R.; Dao, D. M.; Xu, A. W. Shape effects of Cu2O polyhedral microcrystals on photocatalytic activity. J. Phys. Chem. C 2010, 114, 5073–5079.

    Article  CAS  Google Scholar 

  15. Xu, H.; Wang, W.; Zhu, W. Shape evolution and size-controllable synthesis of Cu2O octahedra and their morphology-dependent photocatalytic properties. J. Phys. Chem. B 2006, 110, 13829–13834.

    Article  CAS  Google Scholar 

  16. Shi, J.; Huang, X.; Tan, Y. Synthesis and enhanced photocatalytic activity of regularly shaped Cu2O nanowire polyhedra. Nano Res. 2011, 4, 448–459.

    Article  CAS  Google Scholar 

  17. Ng, C. H. B.; Fan, W. Y. Shape evolution of Cu2O nanostructures via kinetic and thermodynamic controlled growth. J. Phys. Chem. B 2006, 110, 20801–20807.

    Article  CAS  Google Scholar 

  18. Kuo, C. -H.; Chen, C. -H.; Huang, M. H. Seed-mediated synthesis of monodispersed Cu2O nanocubes with five different size ranges from 40 to 420 nm. Adv. Funct. Mater. 2007, 17, 3773–3780.

    Article  CAS  Google Scholar 

  19. Gou, L.; Murphy, C. J. Solution-phase synthesis of Cu2O nanocubes. Nano. Lett. 2003, 3, 231–234.

    Article  CAS  Google Scholar 

  20. Siegfried, M. J.; Choi, K. -S. Directing the architecture of cuprous oxide crystals during electrochemical growth. Angew. Chem. Int. Ed. 2005, 44, 3218–3223.

    Article  CAS  Google Scholar 

  21. Siegfried, M. J.; Choi, K. -S. Electrochemical crystallization of cuprous oxide with systematic shape evolution. Adv. Mater. 2004, 16, 1743–1746.

    Article  CAS  Google Scholar 

  22. Li, H.; Liu, R.; Zhao, R.; Zheng, Y.; Chen, W.; Xu, Z. Morphology control of electrodeposited Cu2O crystals in aqueous solutions using room temperature hydrophilic ionic liquids. Cryst. Growth Des. 2006, 6, 2795–2798.

    Article  CAS  Google Scholar 

  23. Lu, C.; Qi, L.; Yang, J.; Wang, X.; Zhang, D.; Xie, J.; Ma, J. One-pot synthesis of octahedral Cu2O nanocages via a catalytic solution route. Adv. Mater. 2005, 17, 2562–2567.

    Article  CAS  Google Scholar 

  24. Teo, J. J.; Chang, Y.; Zeng, H. C. Fabrications of hollow nanocubes of Cu2O and Cu via reductive self-assembly of CuO nanocrystals. Langmuir 2006, 22, 7369–7377.

    Article  CAS  Google Scholar 

  25. Chang, Y.; Teo, J. J.; Zeng, H. C. Formation of colloidal CuO nanocrystallites and their spherical aggregation and reductive transformation to hollow Cu2O nanospheres. Langmuir 2005, 21, 1074–1079.

    Article  CAS  Google Scholar 

  26. Xu, H.; Wang, W. Template synthesis of multishelled Cu2O hollow spheres with a single-crystalline shell wall. Angew. Chem. Int. Ed. 2007, 46, 1489–1492.

    Article  CAS  Google Scholar 

  27. Pan, M. L.; Zeng, H. C. Highly ordered self-assemblies of submicrometer Cu2O spheres and their hollow chalcogenide derivatives. Langmuir 2010, 26, 5963–5970.

    Article  Google Scholar 

  28. Kuo, C. -H.; Huang, M. H. Fabrication of truncated rhombic dodecahedral Cu2O nanocages and nanoframes by particle aggregation and acidic etching. J. Am. Chem. Soc. 2008, 130, 12815–12820.

    Article  CAS  Google Scholar 

  29. Sui, Y.; Fu, W.; Zeng, Y.; Yang, H.; Zhang, Y.; Chen, H.; Li, Y.; Li, M.; Zou, G. Synthesis of Cu2O nanoframes and nanocages by selective oxidative etching at room temperature. Angew. Chem. Int. Ed. 2010, 49, 4282–4285.

    Article  CAS  Google Scholar 

  30. Singh, D. P.; Neti, N. R.; Sinha, A. S. K.; Srivastava, O. N. Growth of different nanostructures of Cu2O (nanothreads, nanowires, and nanocubes) by simple electrolysis based oxidation of copper. J. Phys. Chem. C 2007, 111, 1638–1645.

    Article  CAS  Google Scholar 

  31. Wang, W.; Wang, G.; Wang, X.; Zhan, Y.; Liu, Y.; Zheng, C. Synthesis and characterization of Cu2O nanowires by a novel reduction route. Adv. Mater. 2002, 14, 67–69.

    Article  CAS  Google Scholar 

  32. Tan, Y.; Xue, X.; Peng, Q.; Zhao, H.; Wang, T.; Li, Y. Controllable fabrication and electrical performance of single crystalline Cu2O nanowires with high aspect ratios. Nano. Lett. 2007, 7, 3723–3728.

    Article  CAS  Google Scholar 

  33. Hong, X.; Wang, G.; Zhu, W.; Shen, X.; Wang, Y. Synthesis of sub-10 nm Cu2O nanowires by poly(vinyl pyrrolidone)-assisted electrodeposition. J. Phys. Chem. C 2009, 113, 14172–14175.

    Article  CAS  Google Scholar 

  34. Yuhas, B. D.; Yang, P. Nanowire-based all-oxide solar cells. J. Am. Chem. Soc. 2009, 131, 3756–3761.

    Article  CAS  Google Scholar 

  35. Kuo, C. -H.; Huang, M. H. Morphologically controlled synthesis of Cu2O nanocrystals and their properties. Nano Today 2010, 5, 106–116.

    Article  CAS  Google Scholar 

  36. Kuo, C. H.; Hua, T. E.; Huang, M. H. Au nanocrystal-directed growth of Au-Cu2O core-shell heterostructures with precise morphological control. J. Am. Chem. Soc. 2009, 131, 17871–17878.

    Article  CAS  Google Scholar 

  37. Kuo, C. H.; Yang, Y. C.; Gwo, S.; Huang, M. H. Facet-dependent and Au nanocrystal-enhanced electrical and photocatalytic properties of Au-Cu2O core-shell heterostructures. J. Am. Chem. Soc. 2011, 133, 1052–1057.

    Article  CAS  Google Scholar 

  38. Hu, H.; Yu, J.; Liu, S.; Mann, S. Template-free hydrothermal synthesis of CuO/Cu2O composite hollow microspheres. Chem. Mater. 2007, 19, 4327–4334.

    Article  CAS  Google Scholar 

  39. Zhang, Y. G.; Ma, L. L.; Li, J. L.; Yu, Y. In situ Fenton reagent generated from TiO2/Cu2O composite film: A new way to utilize TiO2 under visible light irradiation. Environ. Sci. Technol. 2007, 41, 6264–6269.

    Article  CAS  Google Scholar 

  40. Li, J. L.; Liu, L.; Yu, Y.; Tang, Y. W.; Li, H. L.; Du, F. P. Preparation of highly photocatalytic active nano-size TiO2-Cu2O particle composites with a novel electrochemical method. Electrochem. Commun. 2004, 6, 940–943.

    Article  CAS  Google Scholar 

  41. Lalitha, K.; Sadanandam, G. Kumari, V. D.; Subrahmanyam, M.; Sreedhar, B.; Hebalkar, N. Y. Highly stabilized and finely dispersed Cu2O/TiO2: A promising visible sensitive photocatalyst for continuous production of hydrogen from glycerol:water mixtures. J. Phys. Chem. C 2010, 114, 22181–22189.

    Article  CAS  Google Scholar 

  42. Goedkoop, J. A.; Andresen, A. F. The crystal structure of copper hydride. Acta Crystallogr. 1955, 8, 118–119.

    Article  CAS  Google Scholar 

  43. Moulder, T. F.; Stickle, W. F.; Sobol, P. E.; Bomben, K. D. Handbook of X-ray Photoelectron Spectroscopy; Perkin Elmer: Eden Prairie, Minnesota, 1992.

    Google Scholar 

  44. Kelly, K. L.; Coronado, E.; Zhao, L. L.; Schatz, G. C. The optical properties of metal nanoparticles: The influence of size, shape, and dielectric environment. J. Phys. Chem. B 2003, 107, 668–677.

    Article  CAS  Google Scholar 

  45. Tong, G.; Guan, J.; Xiao, Z.; Mou, F.; Wang, W.; Yan, G. In situ generated H2 bubble-engaged assembly: A one-step approach for shape-controlled growth of Fe nanostructures. Chem. Mater. 2008, 20, 3535–3539.

    Article  CAS  Google Scholar 

  46. Hua, Q.; Huang, W. X. Chemical etching induced shape change of magnetite microcrystals. J. Mater. Chem. 2008, 18, 4286–4290.

    Article  CAS  Google Scholar 

  47. Nagase, K.; Zheng, Y.; Kodama, Y. Kakuta, J. Dynamic study of the oxidation state of copper in the course of carbon monoxide oxidation over powdered CuO and Cu2O. J. Catal. 1999, 187, 123–130.

    Article  CAS  Google Scholar 

  48. Bauer, C.; Jacques, P.; Kalt, A. Investigation of the interaction between a sulfonated azo dye (AO7) and a TiO2 surface. Chem. Phys. Lett. 1999, 307, 397–406.

    Article  CAS  Google Scholar 

  49. Saito, Y.; Kim, B.; Machida, K.; Uno, T. The coordinative behavior of the ethereal oxygen atom in cobalt, nickel and copper complexes with Schiff bases obtained from salicylaldehyde derivatives and 2-(aminomethyl)furan. Bull. Chem. Soc. Jpn. 1974, 47, 2111–2114.

    Article  Google Scholar 

  50. Chen, C.; Ma, W.; Zhao, J. Semiconductor-mediated photo-degradation of pollutants under visible-light irradiation. Chem. Soc. Rev. 2010, 39, 4206–4219.

    Article  CAS  Google Scholar 

  51. Hoffmann, M. R.; Martin, S. T.; Choi, W.; Bahnemann, D. W. Environmental applications of semiconductor photocatalysis. Chem. Rev. 1995, 95, 69–96.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Weixin Huang.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hua, Q., Shi, F., Chen, K. et al. Cu2O-Au nanocomposites with novel structures and remarkable chemisorption capacity and photocatalytic activity. Nano Res. 4, 948–962 (2011). https://doi.org/10.1007/s12274-011-0151-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-011-0151-8

Keywords

Navigation