Skip to main content
Log in

Progress in cancer therapy targeting c-Met signaling pathway

  • Review
  • Published:
Archives of Pharmacal Research Aims and scope Submit manuscript

Abstact

A primary hurdle in developing anticancer therapeutics is to selectively target cancer cells while sparing normal tissues. Oncogenic protein kinases represent a class of biologically important targets for cancer intervention. Among them, c-Met is a receptor tyrosine kinase (RTK) that has low activity in normal tissues but is dysregulated in many tumor types. The c-Met is the prototype member of a subfamily of RTKs, which includes Ron, which is structurally distinct from other RTK families. It is the only known high-affinity receptor for hepatocyte growth factor, also known as scatter factor. HGF and c-Met are both required for normal mammalian development. In adults, both are widely expressed in a variety of tissues; however, their expression is normally very low and is involved mainly in tissue damage, repair and regeneration. The results of in vitro and in vivo experiments have shown that this receptor-growth factor pair is involved in multiple physiologic cellular responses, including cell proliferation, survival, differentiation, motility, and invasion. Here, as well as presenting the biological aspects of c-Met signaling regulation, we consider recent findings that have provided new knowledge at the molecular, cellular, and animal study. Also, we describe how the c-Met pathway is tuned by the functional cooperation between various signal transducers. We then discuss the progress in the development of agents that target the c-Met pathway, with an emphasis on small molecules of c-Met kinase inhibitors. Finally, we provide our perspective in terms of possible future trends and limitation in this field.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bean, J., Brennan, C., Shih, J. Y., Riely, G., Viale, A., Wang, L., Chitale, D., Motoi, N., Szoke, J., Broderick, S., Balak, M., Chang, W. C., Yu, C. J., Gazdar, A., Pass, H., Rusch, V., Gerald, W., Huang, S. F., Yang, P. C., Miller, V., Ladanyi, M., Yang, C. H., and Pao, W., MET amplification occurs with or without T790M mutations in EGFR mutant lung tumors with acquired resistance to gefitinib or erlotinib. Proc. Natl. Acad. Sci. U. S. A., 104, 20932–20937 (2007).

    Article  PubMed  CAS  Google Scholar 

  • Birchmeier, C. and Gherardi, E., Developmental roles of HGF/SF and its receptor, the c-Met tyrosine kinase. Trends Cell Biol., 8, 404–410 (1998).

    Article  PubMed  CAS  Google Scholar 

  • Birchmeier, C., Birchmeier, W., Gherardi, E., and Vande Woude, G. F., Met, metastasis, motility and more. Nat. Rev. Mol. Cell Biol., 4, 915–925 (2003).

    Article  PubMed  CAS  Google Scholar 

  • Boccaccio, C., Ando, M., Tamagnone, L., Bardelli, A., Michieli, P., Battistini, C., and Comoglio, P. M., Induction of epithelial tubules by growth factor HGF depends on the STAT pathway. Nature, 391, 285–288 (1998).

    Article  PubMed  CAS  Google Scholar 

  • Bottaro, D. P., Rubin, J. S., Faletto, D. L., Chan, A. M., Kmiecik, T. E., Vande Woude, G. F., and Aaronson, S. A., Identification of the hepatocyte growth factor receptor as the c-met proto-oncogene product. Science, 251, 802–804 (1991).

    Article  PubMed  CAS  Google Scholar 

  • Buchanan, S. G., Hendle, J., Lee, P. S., Smith, C. R., Bounaud, P. Y., Jessen, K. A., Tang, C. M., Huser, N. H., Felce, J. D., Froning, K. J., Peterman, M. C., Aubol, B. E., Gessert, S. F., Sauder, J. M., Schwinn, K. D., Russell, M., Rooney, I. A., Adams, J., Leon, B. C., Do, T. H., Blaney, J. M., Sprengeler, P. A., Thompson, D. A., Smyth, L., Pelletier, L. A., Atwell, S., Holme, K., Wasserman, S. R., Emtage, S., Burley, S. K., and Reich, S. H., SGX523 is an exquisitely selective, ATP-competitive inhibitor of the MET receptor tyrosine kinase with antitumor activity in vivo. Mol. Cancer Ther., 8, 3181–3190 (2009).

    Article  PubMed  CAS  Google Scholar 

  • Burgess, T., Coxon, A., Meyer, S., Sun, J., Rex, K., Tsuruda, T., Chen, Q., Ho, S. Y., Li, L., Kaufman, S., McDorman, K., Cattley, R. C., Elliott, G., Zhang, K., Feng, X., Jia, X. C., Green, L., Radinsky, R., and Kendall, R., Fully human monoclonal antibodies to hepatocyte growth factor with therapeutic potential against hepatocyte growth factor/c-Met-dependent human tumors. Cancer Res., 66, 1721–1729 (2006).

    Article  PubMed  CAS  Google Scholar 

  • Christensen, J. G., Schreck, R., Burrows, J., Kuruganti, P., Chan, E., Le, P., Chen, J., Wang, X., Ruslim, L., Blake, R., Lipson, K. E., Ramphal, J., Do, S., Cui, J. J., Cherrington, J. M., and Mendel, D. B., A selective small molecule inhibitor of c-Met kinase inhibits c-Met-dependent phenotypes in vitro and exhibits cytoreductive antitumor activity in vivo. Cancer Res., 63, 7345–7355 (2003).

    PubMed  CAS  Google Scholar 

  • Christensen, J. G., Burrows, J., and Salgia, R., c-Met as a target for human cancer and characterization of inhibitors for therapeutic intervention. Cancer Lett., 225, 1–26 (2005).

    Article  PubMed  CAS  Google Scholar 

  • Comoglio, P. M., Giordano, S., and Trusolino, L., Drug development of MET inhibitors: targeting oncogene addiction and expedience. Nat. Rev. Drug Discov., 7, 504–516 (2008).

    Article  PubMed  CAS  Google Scholar 

  • De Bacco, F., Luraghi, P., Medico, E., Reato, G., Girolami, F., Perera, T., Gabriele, P., Comoglio, P. M., and Boccaccio, C., Induction of MET by ionizing radiation and its role in radioresistance and invasive growth of cancer. J. Natl. Cancer Inst., 103, 645–661 (2010).

    Google Scholar 

  • Di Renzo, M. F., Narsimhan, R. P., Olivero, M., Bretti, S., Giordano, S., Medico, E., Gaglia, P., Zara, P., and Comoglio, P. M., Expression of the Met/HGF receptor in normal and neoplastic human tissues. Oncogene, 6, 1997–2003 (1991).

    PubMed  Google Scholar 

  • Eder, J. P., Shapiro, G. I., Appleman, L. J., Zhu, A. X., Miles, D., Keer, H., Cancilla, B., Chu, F., Hitchcock-Bryan, S., Sherman, L., McCallum, S., Heath, E. I., Boerner, S. A., and LoRusso, P. M., A phase I study of foretinib, a multi-targeted inhibitor of c-Met and vascular endothelial growth factor receptor 2. Clin. Cancer Res., 16, 3507–3516 (2010).

    Article  PubMed  CAS  Google Scholar 

  • Engelman, J. A., Zejnullahu, K., Mitsudomi, T., Song, Y., Hyland, C., Park, J. O., Lindeman, N., Gale, C. M., Zhao, X., Christensen, J., Kosaka, T., Holmes, A. J., Rogers, A. M., Cappuzzo, F., Mok, T., Lee, C., Johnson, B. E., Cantley, L. C., and Janne, P. A., c-MET amplification leads to gefitinib resistance in lung cancer by activating ERBB3 signaling. Science, 316, 1039–1043 (2007).

    Article  PubMed  CAS  Google Scholar 

  • Fischer, O. M., Giordano, S., Comoglio, P. M., and Ullrich, A., Reactive oxygen species mediate Met receptor transactivation by G protein-coupled receptors and the epidermal growth factor receptor in human carcinoma cells. J. Biol. Chem., 279, 28970–28978 (2004).

    Article  PubMed  CAS  Google Scholar 

  • Follenzi, A., Bakovic, S., Gual, P., Stella, M. C., Longati, P., and Comoglio, P. M., Cross-talk between the proto-oncogenes Met and Ron. Oncogene, 19, 3041–3049 (2000).

    Article  PubMed  CAS  Google Scholar 

  • Gherardi, E. and Stoker, M., Hepatocytes and scatter factor. Nature, 346, 228 (1990).

    Article  PubMed  CAS  Google Scholar 

  • Greenman, C., Stephens, P., Smith, R., Dalgliesh, G. L., Hunter, C., Bignell, G., Davies, H., and Stratton, M. R., Patterns of somatic mutation in human cancer genomes. Nature, 446, 153–158 (2007).

    Article  PubMed  CAS  Google Scholar 

  • Guessous, F., Zhang, Y., diPierro, C., Marcinkiewicz, L., Sarkaria, J., Schiff, D., Buchanan, S., and Abounader, R., An orally bioavailable c-Met kinase inhibitor potently inhibits brain tumor malignancy and growth. Anticancer Agents Med. Chem., 10, 28–35 (2010).

    PubMed  CAS  Google Scholar 

  • Jun, H. T., Sun, J., Rex, K., Radinsky, R., Kendall, R., Coxon, A., and Burgess, T. L., AMG 102, a fully human antihepatocyte growth factor/scatter factor neutralizing antibody, enhances the efficacy of temozolomide or docetaxel in U-87 MG cells and xenografts. Clin. Cancer Res., 13, 6735–6742 (2007).

    Article  PubMed  CAS  Google Scholar 

  • Karamouzis, M. V., Konstantinopoulos, P. A., and Papavassiliou, A. G., Trastuzumab-mechanism of action and use. N. Engl. J. Med., 357, 1664; author reply 1665–1666 (2007).

    Article  PubMed  CAS  Google Scholar 

  • Khoury, H., Naujokas, M. A., Zuo, D., Sangwan, V., Frigault, M. M., Petkiewicz, S., Dankort, D. L., Muller, W. J., and Park, M., HGF converts ErbB2/Neu epithelial morphogenesis to cell invasion. Mol. Biol. Cell, 16, 550–561 (2005).

    Article  PubMed  CAS  Google Scholar 

  • Kim, K. J., Wang, L., Su, Y. C., Gillespie, G. Y., Salhotra, A., Lal, B., and Laterra, J., Systemic anti-hepatocyte growth factor monoclonal antibody therapy induces the regression of intracranial glioma xenografts. Clin. Cancer Res., 12, 1292–1298 (2006).

    Article  PubMed  CAS  Google Scholar 

  • Knudsen, B. S. and Vande Woude, G., Showering c-METdependent cancers with drugs. Curr. Opin. Genet. Dev., 18, 87–96 (2008).

    Article  PubMed  CAS  Google Scholar 

  • Kong-Beltran, M., Stamos, J., and Wickramasinghe, D., The Sema domain of Met is necessary for receptor dimerization and activation. Cancer Cell, 6, 75–84 (2004).

    Article  PubMed  CAS  Google Scholar 

  • Kovacs, G., Molecular cytogenetics of renal cell tumors. Adv. Cancer Res., 62, 89–124 (1993).

    Article  PubMed  CAS  Google Scholar 

  • Lamorte, L., Kamikura, D. M., and Park, M., A switch from p130Cas/Crk to Gab1/Crk signaling correlates with anchorage independent growth and JNK activation in cells transformed by the Met receptor oncoprotein. Oncogene, 19, 5973–5981 (2000).

    Article  PubMed  CAS  Google Scholar 

  • Laux I., Phase I dose escalation trial (ARQ197-111) evaluating combination of selective c-Met inhibitor ARQ197 and erlotinib. The AACR Annual Meeting, Abstract 3549 (2009).

  • Lee, C. C., Putnam, A. J., Miranti, C. K., Gustafson, M., Wang, L. M., Vande Woude, G. F., and Gao, C. F., Overexpression of sprouty 2 inhibits HGF/SF-mediated cell growth, invasion, migration, and cytokinesis. Oncogene, 23, 5193–5202 (2004).

    Article  PubMed  CAS  Google Scholar 

  • Liu, X., Yao, W., Newton, R. C., and Scherle, P. A., Targeting the c-MET signaling pathway for cancer therapy. Expert Opin. Investig. Drugs, 17, 997–1011 (2008).

    Article  PubMed  CAS  Google Scholar 

  • Liu, X., Newton, R. C., and Scherle, P. A., Developing c-MET pathway inhibitors for cancer therapy: progress and challenges. Trends Mol. Med., 16, 37–45 (2010).

    Article  PubMed  CAS  Google Scholar 

  • Ma, P. C., Tretiakova, M. S., MacKinnon, A. C., Ramnath, N., Johnson, C., Dietrich, S., Seiwert, T., Christensen, J. G., Jagadeeswaran, R., Krausz, T., Vokes, E. E., Husain, A. N., and Salgia, R., Expression and mutational analysis of MET in human solid cancers. Genes Chromosomes Cancer, 47, 1025–1037 (2008).

    Article  PubMed  CAS  Google Scholar 

  • Ma, W. W. and Adjei, A. A., Novel agents on the horizon for cancer therapy. CA Cancer J. Clin., 59, 111–137 (2009).

    Article  PubMed  Google Scholar 

  • Martens, T., Schmidt, N. O., Eckerich, C., Fillbrandt, R., Merchant, M., Schwall, R., Westphal, M., and Lamszus, K., A novel one-armed anti-c-Met antibody inhibits glioblastoma growth in vivo. Clin. Cancer Res., 12, 6144–6152 (2006).

    Article  PubMed  CAS  Google Scholar 

  • Matsumoto, K. and Nakamura, T., Mechanisms and significance of bifunctional NK4 in cancer treatment. Biochem. Biophys. Res. Commun., 333, 316–327 (2005).

    Article  PubMed  CAS  Google Scholar 

  • Mazzone, M., Basilico, C., Cavassa, S., Pennacchietti, S., Risio, M., Naldini, L., Comoglio, P. M., and Michieli, P., An uncleavable form of pro-scatter factor suppresses tumor growth and dissemination in mice. J. Clin. Invest., 114, 1418–1432 (2004).

    PubMed  CAS  Google Scholar 

  • Michieli, P., Mazzone, M., Basilico, C., Cavassa, S., Sottile, A., Naldini, L., and Comoglio, P. M., Targeting the tumor and its microenvironment by a dual-function decoy Met receptor. Cancer Cell, 6, 61–73 (2004).

    Article  PubMed  CAS  Google Scholar 

  • Munshi, N., Jeay, S., Li, Y., Chen, C. R., France, D. S., Ashwell, M. A., Hill, J., Moussa, M. M., Leggett, D. S., Li, and C. J., ARQ 197, a novel and selective inhibitor of the human c-Met receptor tyrosine kinase with antitumor activity. Mol. Cancer Ther., 9, 1544–1553 (2010).

    Article  PubMed  CAS  Google Scholar 

  • Naldini, L., Weidner, K. M., Vigna, E., Gaudino, G., Bardelli, A., Ponzetto, C., Narsimhan, R. P., Hartmann, G., Zarnegar, R., and Michalopoulos, G. K., Scatter factor and hepatocyte growth factor are indistinguishable ligands for the MET receptor. EMBO J., 10, 2867–2878 (1991).

    PubMed  CAS  Google Scholar 

  • Pelicci, G., Giordano, S., Zhen, Z., Salcini, A. E., Lanfrancone, L., Bardelli, A., Panayotou, G., Waterfield, M. D., Ponzetto, C., and Pelicci, P. G., The motogenic and mitogenic responses to HGF are amplified by the Shc adaptor protein. Oncogene, 10, 1631–1638 (1995).

    PubMed  CAS  Google Scholar 

  • Petrelli, A., Circosta, P., Granziero, L., Mazzone, M., Pisacane, A., Fenoglio, S., Comoglio, P. M., and Giordano, S., Abinduced ectodomain shedding mediates hepatocyte growth factor receptor down-regulation and hampers biological activity. Proc. Natl. Acad. Sci. U. S. A., 103, 5090–5095 (2006).

    Article  PubMed  CAS  Google Scholar 

  • Ponzetto, C., Bardelli, A., Zhen, Z., Maina, F., dalla Zonca, P., Giordano, S., Graziani, A., Panayotou, G., and Comoglio, P. M., A multifunctional docking site mediates signaling and transformation by the hepatocyte growth factor/scatter factor receptor family. Cell, 77, 261–271 (1994).

    Article  PubMed  CAS  Google Scholar 

  • Qian, F., Engst, S., Yamaguchi, K., Yu, P., Won, K. A., Mock, L., Lou, T., Tan, J., Li, C., Tam, D., Lougheed, J., Yakes, F. M., Bentzien, F., Xu, W., Zaks, T., Wooster, R., Greshock, J., and Joly, A. H., Inhibition of tumor cell growth, invasion, and metastasis by EXEL-2880 (XL880, GSK1363089), a novel inhibitor of HGF and VEGF receptor tyrosine kinases. Cancer Res., 69, 4408–4417 (2009)

    Google Scholar 

  • Recio, J. A. and Merlino, G., Hepatocyte growth factor/scatter factor activates proliferation in melanoma cells through p38 MAPK, ATF-2 and cyclin D1. Oncogene, 21, 1000–1008 (2002).

    Article  PubMed  CAS  Google Scholar 

  • Rikova, K., Guo, A., Zeng, Q., Possemato, A., Yu, J., Haack, H., Nardone, J., Lee, K., and Comb, M. J., Global survey of phosphotyrosine signaling identifies oncogenic kinases in lung cancer. Cell, 131, 1190–1203 (2007).

    Article  PubMed  CAS  Google Scholar 

  • Rodrigues, G. A., Park, M., and Schlessinger, J., Activation of the JNK pathway is essential for transformation by the Met oncogene. EMBO J., 16, 2634–2645 (1997).

    Article  PubMed  CAS  Google Scholar 

  • Rosen, L. S., Senzer, N., Mekhail, T., Ganapathi, R., Chai, F., Savage, R. E., Waghorne, C., Abbadessa, G., Schwartz, B., and Dreicer, R., A phase I dose-escalation study of Tivantinib (ARQ 197) in adult patients with metastatic solid tumors. Clin. Cancer Res., 17, 7754–7764 (2011).

    Article  PubMed  CAS  Google Scholar 

  • Smolen, G. A., Sordella, R., Muir, B., Mohapatra, G., Barmettler, A., Archibald, H., Kim, W. J., and Haber, D. A., Amplification of MET may identify a subset of cancers with extreme sensitivity to the selective tyrosine kinase inhibitor PHA-665752. Proc. Natl. Acad. Sci. U. S. A., 103, 2316–2321 (2006).

    Article  PubMed  CAS  Google Scholar 

  • Sonnenberg, E., Meyer, D., Weidner, K. M., and Birchmeier, C., Scatter factor/hepatocyte growth factor and its receptor, the c-met tyrosine kinase, can mediate a signal exchange between mesenchyme and epithelia during mouse development. J. Cell Biol., 123, 223–235 (1993).

    Article  PubMed  CAS  Google Scholar 

  • Stella, M. C., Trusolino, L., Pennacchietti, S., and Comoglio, P. M., Negative feedback regulation of Met-dependent invasive growth by Notch. Mol. Cell. Biol., 25, 3982–3996 (2005).

    Article  PubMed  CAS  Google Scholar 

  • Trusolino, L., Bertotti, A., and Comoglio, P. M., MET signalling: principles and functions in development, organ regeneration and cancer. Nat. Rev. Mol. Cell Biol., 11, 834–848 (2010).

    Article  PubMed  CAS  Google Scholar 

  • Weidner, K. M., Arakaki, N., Hartmann, G., Vandekerckhove, J., Weingart, S., Rieder, H., Fonatsch, C., Tsubouchi, H., Hishida, T., Daikuhara, Y., and Birchmeier, W., Evidence for the identity of human scatter factor and human hepatocyte growth factor. Proc. Natl. Acad. Sci. U. S. A., 88, 7001–7005 (1991).

    Article  PubMed  CAS  Google Scholar 

  • Yap, T. A., Olmos, D., Brunetto, A. T., Tunariu, N., Barriuso, J., Riisnaes, R., Pope, L., Clark, J., Futreal, A., Germuska, M., Collins, D., deSouza, N. M., Leach, M. O., Savage, R. E., Waghorne, C., Chai, F., Garmey, E., Schwartz, B., Kaye, S. B., de, and Bono, J. S., Phase I trial of a selective c-MET inhibitor ARQ 197 incorporating proof of mechanism pharmacodynamic studies. J. Clin. Oncol., 29, 1271–1279 (2011).

    Article  PubMed  CAS  Google Scholar 

  • Zhang, Y. W., Wang, L. M., Jove, R., and Vande Woude, G. F., Requirement of Stat3 signaling for HGF/SF-Met mediated tumorigenesis. Oncogene, 21, 217–226 (2002).

    Article  PubMed  CAS  Google Scholar 

  • Zhuang, Z., Park, W. S., Pack, S., Schmidt, L., Vortmeyer, A. O., Pak, E., Pham, T., Weil, R. J., Candidus, S., Lubensky, I. A., Linehan, W. M., Zbar, B., and Weirich, G., Trisomy 7-harbouring non-random duplication of the mutant MET allele in hereditary papillary renal carcinomas. Nat. Genet., 20, 66–69 (1998).

    Article  PubMed  CAS  Google Scholar 

  • Zou, H. Y., Li, Q., Lee, J. H., Arango, M. E., McDonnell, S. R., Yamazaki, S., Koudriakova, T. B., Alton, G., Cui, J. J., Kung, P. P., Nambu, M. D., Los, G., Bender S. L., Mroczkowski, B., and Christensen, J. G., An orally available small-molecule inhibitor of c-Met, PF-2341066, exhibits cytoreductive antitumor efficacy through antiproliferative and antiangiogenic mechanisms. Cancer Res., 67, 4408–4417 (2007).

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Soon-Sun Hong.

Additional information

These authors contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jung, K.H., Park, B.H. & Hong, SS. Progress in cancer therapy targeting c-Met signaling pathway. Arch. Pharm. Res. 35, 595–604 (2012). https://doi.org/10.1007/s12272-012-0402-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12272-012-0402-6

Key words

Navigation