Skip to main content
Log in

Synthesis and biological evaluations of enoxacin carboxamide derivatives

  • Research Articles
  • Drug Design
  • Published:
Archives of Pharmacal Research Aims and scope Submit manuscript

Abstract

The present work deals with the synthesis of various enoxacin analogues via nucleophilic substitution of 3-carboxylic acid moiety of the drug by aromatic amines. The free carboxylic group was utilized in the formation of amides and the effect of functional group exchange on different biological activities of the parent was evaluated. The structure of these derivatives was established by various spectroscopic techniques and mass spectrometry. The derivatives were evaluated as antibacterial agents against a series of Gram-positive and Gram-negative bacteria whereby some of them displayed considerably improved antimicrobial profile against Gram-negative test strains. Additionally unlike enoxacin, the derivatives were also found to modulate oxidative burst response of phagocytes exhibiting moderate to significant inhibitory activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Anacona, J. R. and Toledo, C., Synthesis and antibacterial activity of metal complexes of ciprofloxacin. Transi. Metal Chem., 26, 228–231 (2001).

    Article  CAS  Google Scholar 

  • Anderson, V. E. and Osheroff, N., Type II topoisomerases as targets for quinolone antibacterials: Turning Dr. Jekyll into Mr. Hyde. Curr. Pharmaceut. Design., 7, 339–355 (2001).

    Article  Google Scholar 

  • Ball, P., Fernald, A., and Tillotson, G., Therapeutic advances of new fluoroquinolones., Expert. Opin. Invest. Drugs., 7, 761–783 (1998).

    Article  CAS  Google Scholar 

  • Ball, P., Quinolone-induced QT interval prolongation: a notso-unexpected class effect. J. Antimicrob. Chemother., 45, 557–559 (2000).

    Article  PubMed  CAS  Google Scholar 

  • Bauer, A. W., Kirby, W. M. M., Sherris, J. C., and Turck, M., Antibiotic susceptibility testing by a standard single disk method. Am. J. Clin. Pathol., 45, 493–496 (1966).

    PubMed  CAS  Google Scholar 

  • Blandeau, J. M., Expanded activity and utility of the new fluoroquinolones: A review. Clini. Therap., 21, 3–40 (1999).

    Article  Google Scholar 

  • Chapman, J. S. and Georgopapadakou, N. H., Routes of quinolone permeation in Escherichia coli. Antimicrob. Chemother., 32, 438–442 (1988).

    CAS  Google Scholar 

  • Chin, N. X. and Neu, H. C., In vitro activity of enoxacin, a quinolone carboxylic acid, compared with those of norfloxacin, new beta-lactams, aminoglycosides, and trimethoprim. Antimicrob. Chemother., 24, 754–763 (1983).

    CAS  Google Scholar 

  • Chu, D. T. W., Fernandes, P. B., Claiborne, A. K., Pihuleac, E., Nordeen., and Pernet, A. G., Synthesis and structureactivity relationships of novel arylfluoroquinolone antibacterial agents. J. Med. Chem., 28, 1558–1564 (1985).

    Article  PubMed  CAS  Google Scholar 

  • Crumplin, G. C., Aspects of chemistry in the development of the 4-quinolone antibacterial agents. Clin. Infect. Dis. [Rev Infect Dis], 10, 1–9 (1988).

    Google Scholar 

  • Daniel, T. W. C. and Prabhavathi, B. F., Structure-activity relationships of the fluoroquinolones. Antimicrob. Chemother., 33, 131–135 (1989).

    Google Scholar 

  • Domagala, J. M., Heifetz, C. L., Hutt, M. P., Mich, T. F., Nichols, J. B., Solomon, M., and Worth, D. F., 1-Substituted 7-[3-[(ethylamino) methyl]-1-pyrrolidinyl]-6, 8-difluoro-1, 4-dihydro-4-oxo-3-quinolinecarboxylic acids. New quantitative structure activity relationships at N1 for the quinolone antibacterials. J. Med. Chem., 31, 991–1001 (1988).

    Article  PubMed  CAS  Google Scholar 

  • Foroumadi, A., Emami, S., Hassanzadeh, A., Rajaee, M., Sokhanvar, K., Moshafi, M. H., and Shafiee, A., Synthesis and antibacterial activity of N-(5-benzylthio-1, 3, 4-thiadiazol-2-yl) and N-(5-benzylsulfonyl-1, 3, 4-thiadiazol-2-yl) piperazinyl quinolone derivatives. Bioorg. Med. Chem. Lett., 15, 4488–4492 (2005).

    Article  PubMed  CAS  Google Scholar 

  • Foroumadi, A., Emami, S., Mansouri, S., Javidnia, A., Saeid-Adeli, N., Shirazi, F. H., and Shafiee, A., Synthesis and antibacterial activity of levofloxacin derivatives with certain bulky residues on piperazine ring. Eur. J. Med. Chem., 42, 985–992 (2007).

    Article  PubMed  CAS  Google Scholar 

  • Foroumadi, A., Emami, S., Mehni, M., Moshafi, M. H., and Shafiee, A., Synthesis and antibacterial activity of N-[2-(5-bromothiophen-2-yl)-2-oxoethyl] and N-[(2-5-bromothiophen-2-yl)-2-oximinoethyl] derivatives of piperazinyl quinolones. Bioorg. Med. Chem. Lett., 15, 4536–4539 (2005).

    Article  PubMed  CAS  Google Scholar 

  • Foroumadi, A., Mansouri, S., Kiani, Z., and Rahmani, A., Synthesis and in vitro antibacterial evaluation of N-[5-(5-quinolones. Eur. J. Med. Chem., 38, 851–854 (2003).

    Article  PubMed  CAS  Google Scholar 

  • Franklin, V., Tamara, Z., Carlos, R., Alvaro, R., Tulynan. C., Yrene, D., Carla, I., Ylec, M. C., Verónica, L., Lubimar, G., Jessenia, O., and Alberto, F., Synthesis, primary photo-physical and antibacterial properties of naphthyl ester cinoxacin and nalidixic acid derivatives. J. Photochem. Photobiol. B: Biol., 92, 83–90 (2008).

    Article  Google Scholar 

  • Helfand, S. L., Werkmeister, J., and Roder, J. C., Chemiluminescence response of human natural killer cells. I. The relationship between target cell binding, chemiluminescence, and cytolysis. J. Exp. Med., 156, 492–505 (1982).

    Article  PubMed  CAS  Google Scholar 

  • Hirosato, K., Fumio, S., Kiyotaka, K., and Goro, T., Studies on prodrugs. 7. Synthesis and antimicrobial activity of 3-formylquinolone derivatives. J. Med. Chem., 31, 221–225 (1988).

    Article  Google Scholar 

  • Janknegt, R., Fluorinated quinolones. A review of their mode of action, antimicrobial activity, pharmacokinetics and clinical efficacy. Pharm Weekbl [Sci]., 8, 1–21 (1986).

    CAS  Google Scholar 

  • Klopman, G., Macina, O. T., Levinson, M. E., and Rosenkranz, H. S., Computer automated structure evaluation of quinolone antibacterial agents. Antimicrob. Agents Chemother., 31, 1831–1840 (1987).

    PubMed  CAS  Google Scholar 

  • Koga, H., Itoh, A., Murayama, S., Suzue, S., and Irikura, T., Structure-activity relationships of antibacterial 6, 7-and 7, 8-disubstituted 1-alkyl-1, 4-dihydro-4-oxoquinoline-3-carboxylic acids. J. Med. Chem., 23, 1358–1363 (1980).

    Article  PubMed  CAS  Google Scholar 

  • Lesher, G. Y., Froelich, E. J., Gruett, M. D., Bailey, J. H., and Brundage, R. P., 1,8-Naphthyridine Derivatives. A New Class of Chemotherapeutic Agents. J. Med. Pharm. Chem., 5, 1063–1065 (1962).

    Article  CAS  Google Scholar 

  • Lester, A. M., Bacterial topoisomerase inhibitors: Quinolone and pyridone antibacterial agents. Chem. Rev., 105, 559–592 (2005).

    Article  Google Scholar 

  • Li, Z. R., Guo, H. Y., and Zhang, Z. P., Studies on pyridone carboxylic acids as anti-bacterial agents. IX. Study on prodrugs of some pyridone carboxylic acids. Yao Xue Xue Bao., 26, 111–6 (1991).

    PubMed  CAS  Google Scholar 

  • Mascellino, M. T., Farinelli, S., Iegri, F., Iona, E., and De Simone, C., Antimicrobial activity of fluoroquinolones and other antibiotics on 1, 116 clinical Gram-positive and Gramnegative isolates. Drugs Expert. Clin. Res., 24, 139–151 (1998)

    CAS  Google Scholar 

  • Paton, J. H. and Reeves, D. S., Fluoroquinolone antibiotics. Microbiology, pharmacokinetics and clinical use. Drugs., 36, 193–228 (1988).

    Article  PubMed  CAS  Google Scholar 

  • Pfeiffer, S., Lass, A., Schmidt, K., Mayer, B., Protein tyrosine nitration in mouse peritoneal macrophages activated in vitro and in vivo: evidence against an essential role of peroxynitrite. FASEB J., 15, 2355–64 (2001).

    Article  PubMed  CAS  Google Scholar 

  • Sanders, C. C., Ciprofloxacin: in vitro activity, mechanism of action, and resistance. Rev Infect Dis., 10, 516–527 (1988).

    PubMed  CAS  Google Scholar 

  • Shen, L. L., Mitscher, L. A., Sharma, P. N., O’Donnell, T. J., Chu, D. W. T., Cooper, C. S., Rosen, T., and Pernet, A. G., Mechanism of inhibition of DNA gyrase by quinolone antibacterials: A cooperative drug-DNA binding model. Biochemistry., 28, 3886–3894 (1989).

    Article  PubMed  CAS  Google Scholar 

  • Sissi, C. and Palumbo, M., The quinolone family: From antibacterial to anticancer agents. Curr. Med. Chem.-Anti-Cancer Agents., 3, 439–450 (2003).

    Article  CAS  Google Scholar 

  • Tauber, S. C. and Nau, R., Immunomodulatory properties of antibiotics. Curr. Mol. Pharmacol., 1, 68–79 (2008).

    CAS  Google Scholar 

  • Tomišic, Z. B., Kujundžic, N., Krajacic, M. B., Višnjevac, A., and Kojic-Prodic, B., Molecular structures of new ciprofloxacin derivatives. J. Mol. Struct., 611, 73–81 (2002).

    Article  Google Scholar 

  • Turnidge, J., Pharmacokinetics and pharmacodynamics of fluoroquinolones. Drugs., 58, 29–36 (1999).

    Article  PubMed  CAS  Google Scholar 

  • Wiik, P., Opstad, P. K., Boyum, A., Granulocyte chemiluminescence response to serum opsonized zymosan particlesex vivo during long-term strenuous exercise, energy and sleep deprivation in humans. Eur. J. Appl. Physiol., 73, 251–258 (1996).

    Article  CAS  Google Scholar 

  • Wood, M. J., Tissue penetration and clinical efficacy of enoxacin in respiratory tract infections. Clin. Pharmacokinet., 16, 38–45 (1989).

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Saeed Arayne.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Saeed Arayne, M., Sultana, N., Haroon, U. et al. Synthesis and biological evaluations of enoxacin carboxamide derivatives. Arch. Pharm. Res. 32, 967–974 (2009). https://doi.org/10.1007/s12272-009-1700-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12272-009-1700-5

Key words

Navigation