Skip to main content

Advertisement

Log in

Development of a Novel Human Cell-Derived Tissue-Engineered Heart Valve for Transcatheter Aortic Valve Replacement: an In Vitro and In Vivo Feasibility Study

  • Original Article
  • Published:
Journal of Cardiovascular Translational Research Aims and scope Submit manuscript

Abstract

Transcatheter aortic valve replacement (TAVR) is being extended to younger patients. However, TAVR-compatible bioprostheses are based on xenogeneic materials with limited durability. Off-the-shelf tissue-engineered heart valves (TEHVs) with remodeling capacity may overcome the shortcomings of current TAVR devices. Here, we develop for the first time a TEHV for TAVR, based on human cell-derived extracellular matrix and integrated into a state-of-the-art stent for TAVR. The TEHVs, characterized by a dense acellular collagenous matrix, demonstrated in vitro functionality under aortic pressure conditions (n = 4). Next, transapical TAVR feasibility and in vivo TEHV functionality were assessed in acute studies (n = 5) in sheep. The valves successfully coped with the aortic environment, showing normal leaflet motion, free coronary flow, and absence of stenosis or paravalvular leak. At explantation, TEHVs presented full structural integrity and initial cell infiltration. Its long-term performance proven, such TEHV could fulfill the need for next-generation lifelong TAVR prostheses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

3D-CT:

Three-dimensional computer tomography

Col-1:

Collagen-1

Col-3:

Collagen-3

DNA:

Deoxyribonucleic acid

ECM:

Extracellular matrix

ELVG:

Elastica van Gieson

GAGs:

Glycosaminoglycans

H&E:

Hematoxylin and eosin

Hyp:

Hydroxyproline

PBS:

Phosphate-buffered saline

SRS:

Suture retention strength

TAVR:

Transcatheter aortic valve replacement

TEE:

Transesophageal echocardiography

TEHV:

Tissue-engineered heart valve

TGF-β1:

Transforming growth factor-beta1

References

  1. Nishimura, R. A., Otto, C. M., Bonow, R. O., Carabello, B. A., Erwin 3rd, J. P., Guyton, R. A., et al. (2014). 2014 AHA/ACC guideline for the management of patients with valvular heart disease: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines. The Journal of Thoracic and Cardiovascular Surgery, 148(1), e1–e132.

    Article  Google Scholar 

  2. Kapadia, S. R., Leon, M. B., Makkar, R. R., Tuzcu, E. M., Svensson, L. G., Kodali, S., et al. (2015). 5-year outcomes of transcatheter aortic valve replacement compared with standard treatment for patients with inoperable aortic stenosis (PARTNER 1): a randomised controlled trial. Lancet, 385(9986), 2485–2491.

    Article  Google Scholar 

  3. Mack, M. J., Leon, M. B., Smith, C. R., Miller, D. C., Moses, J. W., Tuzcu, E. M., et al. (2015). 5-year outcomes of transcatheter aortic valve replacement or surgical aortic valve replacement for high surgical risk patients with aortic stenosis (PARTNER 1): a randomised controlled trial. Lancet, 385(9986), 2477–2484.

    Article  Google Scholar 

  4. Leon, M. B., Smith, C. R., Mack, M. J., Makkar, R. R., Svensson, L. G., Kodali, S. K., et al. (2016). Transcatheter or surgical aortic-valve replacement in intermediate-risk patients. The New England Journal of Medicine, 374(17), 1609–1620.

    Article  CAS  Google Scholar 

  5. Reardon, M. J., Van Mieghem, N. M., Popma, J. J., Kleiman, N. S., Sondergaard, L., Mumtaz, M., et al. (2017). Surgical or transcatheter aortic-valve replacement in intermediate-risk patients. The New England Journal of Medicine, 376(14), 1321–1331.

    Article  Google Scholar 

  6. Rogers, T., Torguson, R., Bastian, R., Corso, P., & Waksman, R. (2017). Feasibility of transcatheter aortic valve replacement in low-risk patients with symptomatic severe aortic stenosis: rationale and design of the Low Risk TAVR (LRT) study. American Heart Journal, 189, 103–109.

    Article  Google Scholar 

  7. Manji, R. A., Lee, W., & Cooper, D. K. (2015). Xenograft bioprosthetic heart valves: past, present and future. International Journal of Surgery, 23(Pt B), 280–284.

    Article  Google Scholar 

  8. Siddiqui, R. F., Abraham, J. R., & Butany, J. (2009). Bioprosthetic heart valves: modes of failure. Histopathology, 55(2), 135–144.

    Article  Google Scholar 

  9. Arora, S., Ramm, C. J., Strassle, P. D., Vaidya, S. R., Caranasos, T. G., & Vavalle, J. P. (2017). Review of major registries and clinical trials of late outcomes after transcatheter aortic valve replacement. The American Journal of Cardiology, 120(2), 331–336.

    Article  Google Scholar 

  10. Arsalan, M., & Walther, T. (2016). Durability of prostheses for transcatheter aortic valve implantation. Nature Reviews. Cardiology, 13(6), 360–367.

    Article  CAS  Google Scholar 

  11. Mylotte, D., Andalib, A., Theriault-Lauzier, P., Dorfmeister, M., Girgis, M., Alharbi, W., et al. (2015). Transcatheter heart valve failure: a systematic review. European Heart Journal, 36(21), 1306–1327.

    Article  Google Scholar 

  12. Metaxa, S., Ioannou, A., & Missouris, C. G. (2017). Transcatheter aortic valve implantation: new hope in the management of valvular heart disease. Postgraduate Medical Journal, 93(1099), 280–288.

    Article  Google Scholar 

  13. Barbanti, M., & Tamburino, C. (2016). Late degeneration of transcatheter aortic valves: pathogenesis and management. EuroIntervention, 12(Y), Y33–Y36.

    Article  Google Scholar 

  14. Dijkman, P. E., Fioretta, E. S., Frese, L., Pasqualini, F. S., & Hoerstrup, S. P. (2016). Heart valve replacements with regenerative capacity. Transfusion Medicine and Hemotherapy, 43(4), 282–290.

    Article  Google Scholar 

  15. Dijkman, P. E., Driessen-Mol, A., Frese, L., Hoerstrup, S. P., & Baaijens, F. P. (2012). Decellularized homologous tissue-engineered heart valves as off-the-shelf alternatives to xeno- and homografts. Biomaterials, 33(18), 4545–4554.

    Article  CAS  Google Scholar 

  16. Driessen-Mol, A., Emmert, M. Y., Dijkman, P. E., Frese, L., Sanders, B., Weber, B., et al. (2014). Transcatheter implantation of homologous “off-the-shelf” tissue-engineered heart valves with self-repair capacity: long-term functionality and rapid in vivo remodeling in sheep. Journal of the American College of Cardiology, 63(13), 1320–1329.

    Article  Google Scholar 

  17. Weber, B., Dijkman, P. E., Scherman, J., Sanders, B., Emmert, M. Y., Grunenfelder, J., et al. (2013). Off-the-shelf human decellularized tissue-engineered heart valves in a non-human primate model. Biomaterials, 34(30), 7269–7280.

    Article  Google Scholar 

  18. Schmitt, B., Spriestersbach, H., O H-Icí, D., Radtke, T., Bartosch, M., Peters, H., et al. (2016). Percutaneous pulmonary valve replacement using completely tissue-engineered off-the-shelf heart valves: six-month in vivo functionality and matrix remodelling in sheep. EuroIntervention, 12(1), 62–70.

    Article  Google Scholar 

  19. Schmidt, D., Dijkman, P. E., Driessen-Mol, A., Stenger, R., Mariani, C., Puolakka, A., et al. (2010). Minimally-invasive implantation of living tissue engineered heart valves: a comprehensive approach from autologous vascular cells to stem cells. Journal of the American College of Cardiology, 56(6), 510–520.

    Article  Google Scholar 

  20. Mol, A., van Lieshout, M. I., Dam-de Veen, C. G., Neuenschwander, S., Hoerstrup, S. P., Baaijens, F. P., et al. (2005). Fibrin as a cell carrier in cardiovascular tissue engineering applications. Biomaterials, 26(16), 3113–3121.

    Article  CAS  Google Scholar 

  21. Mol, A., Driessen, N. J., Rutten, M. C., Hoerstrup, S. P., Bouten, C. V., & Baaijens, F. P. (2005). Tissue engineering of human heart valve leaflets: a novel bioreactor for a strain-based conditioning approach. Annals of Biomedical Engineering, 33(12), 1778–1788.

    Article  Google Scholar 

  22. Sanders, B., Loerakker, S., Fioretta, E. S., Bax, D. J. P., Driessen-Mol, A., Hoerstrup, S. P., et al. (2016). Improved geometry of decellularized tissue engineered heart valves to prevent leaflet retraction. Annals of Biomedical Engineering, 44, 1061–1071.

    Article  Google Scholar 

  23. Pensalfini, M., Meneghello, S., Lintas, V., Bircher, K., Ehret, A. E., & Mazza, E. (2018). The suture retention test, revisited and revised. Journal of the Mechanical Behavior of Biomedical Materials, 77, 711–717.

    Article  CAS  Google Scholar 

  24. Emmert, M. Y., Weber, B., Behr, L., Sammut, S., Frauenfelder, T., Wolint, P., et al. (2014). Transcatheter aortic valve implantation using anatomically oriented, marrow stromal cell-based, stented, tissue-engineered heart valves: technical considerations and implications for translational cell-based heart valve concepts. European Journal of Cardio-Thoracic Surgery, 45(1), 61–68.

    Article  Google Scholar 

  25. Crapo, P. M., Gilbert, T. W., & Badylak, S. F. (2011). An overview of tissue and whole organ decellularization processes. Biomaterials, 32(12), 3233–3243.

    Article  CAS  Google Scholar 

  26. Arora, S., & Vavalle, J. P. (2017). Transcatheter aortic valve replacement in intermediate and low risk patients-clinical evidence. Ann Cardiothorac Surg, 6(5), 493–497.

    Article  Google Scholar 

  27. Alsara, O., Alsarah, A., & Laird-Fick, H. (2014). Advanced age and the clinical outcomes of transcatheter aortic valve implantation. Journal of Geriatric Cardiology: JGC, 11(2), 163–170.

    PubMed  Google Scholar 

  28. Treede, H., Rastan, A., Ferrari, M., Ensminger, S., Figulla, H. R., & Mohr, F. W. (2012). JenaValve. EuroIntervention, 8 Suppl Q, Q88–Q93.

    Article  Google Scholar 

  29. Syedain, Z., Reimer, J., Schmidt, J., Lahti, M., Berry, J., Bianco, R., et al. (2015). 6-month aortic valve implantation of an off-the-shelf tissue-engineered valve in sheep. Biomaterials, 73, 175–184.

    Article  CAS  Google Scholar 

  30. Emmert, M. Y., Weber, B., Behr, L., Frauenfelder, T., Brokopp, C. E., Grünenfelder, J., et al. (2011). Transapical aortic implantation of autologous marrow stromal cell-based tissue-engineered heart valves. JACC: Cardiovascular Interventions, 4(7), 822–823.

    PubMed  Google Scholar 

  31. Emmert M.Y., Weber B., Wolint P., Behr L., Sammut S., Frauenfelder T., et al. (2012). Stem cell-based transcatheter aortic valve implantation: first experiences in a pre-clinical model. JACC Cardiovascular Interventions, 5(8), 874–883.

    Article  Google Scholar 

  32. Neumann, A., Cebotari, S., Tudorache, I., Haverich, A., & Sarikouch, S. (2013). Heart valve engineering: decellularized allograft matrices in clinical practice. Biomedizinische Technik. Biomedical Engineering, 58(5), 453–456.

    Article  Google Scholar 

  33. Miyazaki, Y., Soliman, O. I. I., Abdelghani, M., Katsikis, A., Naz, C., Lopes, S., et al. (2017). Acute performance of a novel restorative transcatheter aortic valve: preclinical results. EuroIntervention, 13(12), e1410–e1417.

    Article  Google Scholar 

  34. Kluin, J., Talacua, H., Smits, A. I., Emmert, M. Y., Brugmans, M. C., Fioretta, E. S., et al. (2017). In situ heart valve tissue engineering using a bioresorbable elastomeric implant - from material design to 12 months follow-up in sheep. Biomaterials, 125, 101–117.

    Article  CAS  Google Scholar 

  35. Emmert, M. Y., Schmitt, B. A., Loerakker, S., Sanders, B., Spriestersbach, H., Fioretta, E. S., et al. (2018). Computational modeling guides tissue-engineered heart valve design for long-term in vivo performance in a translational sheep model. Science Translational Medicine, 10(440).

  36. Reimer, J., Syedain, Z., Haynie, B., Lahti, M., Berry, J., & Tranquillo, R. (2016). Implantation of a tissue-engineered tubular heart valve in growing lambs. Annals of Biomedical Engineering, 45(2), 439–451.

    Article  Google Scholar 

  37. Flanagan, T. C., Sachweh, J. S., Frese, J., Schnoring, H., Gronloh, N., Koch, S., et al. (2009). In vivo remodeling and structural characterization of fibrin-based tissue-engineered heart valves in the adult sheep model. Tissue Engineering. Part A, 15(10), 2965–2976.

    Article  CAS  Google Scholar 

  38. Loerakker, S., Ristori, T., & Baaijens, F. P. (2016). A computational analysis of cell-mediated compaction and collagen remodeling in tissue-engineered heart valves. Journal of the Mechanical Behavior of Biomedical Materials, 58, 173–187.

    Article  CAS  Google Scholar 

  39. Motta, S. E., Fioretta, E. S., Dijkman, P. E., Lintas, V., Behr, L., Hoerstrup, S. P., et al. (2018). Development of an off-the-shelf tissue-engineered sinus valve for transcatheter pulmonary valve replacement: a proof-of-concept study. Journal of Cardiovascular Translational Research, 11(3), 182–191.

    Article  Google Scholar 

Download references

Funding

This work was supported by the Swiss Heart Foundation (grant agreement no. 75010) and by the Forschungskredit Candoc program of the University of Zurich (grant agreement no. F-43010-02-01).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Y. Emmert.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflicts of interest.

Ethical Approval for Research Involving Animals

All institutional and national guidelines for the care and use of laboratory animals were followed and approved by the appropriate institutional committees. All procedures performed in studies involving animals were in accordance with the ethical standards of the institution or practice at which the studies were conducted.

Ethical Approval for Research Involving Humans

This article does not contain any studies with human participants performed by any of the authors.

Clinical Relevance of the Study

Nowadays, all TAVR prostheses are based on non-regenerative glutaraldehyde-fixed xenomaterials and are susceptible to structural tissue degeneration. The short lifespan of current TAVR devices requires repeated interventions over the patient’s lifetime and hence questioning the expansion of TAVR to younger patients. Given proof of their long-term remodeling and functionality as aortic valve substitutes, off-the-shelf, TAVR-compatible TEHVs with self-repair capacity would overcome the shortcomings of current TAVR devices and offer durable, regenerative prostheses for treating adult and young patients.

Additional information

Associate Editor Enrique Lara-Pezzi oversaw the review of this article

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lintas, V., Fioretta, E.S., Motta, S.E. et al. Development of a Novel Human Cell-Derived Tissue-Engineered Heart Valve for Transcatheter Aortic Valve Replacement: an In Vitro and In Vivo Feasibility Study. J. of Cardiovasc. Trans. Res. 11, 470–482 (2018). https://doi.org/10.1007/s12265-018-9821-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12265-018-9821-1

Keywords

Navigation