Skip to main content
Log in

Implantation of a Tissue-Engineered Tubular Heart Valve in Growing Lambs

  • The Pursuit of Engineering the Ideal Heart Valve Replacement or Repair
  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Current pediatric heart valve replacement options are suboptimal because they are incapable of somatic growth. Thus, children typically have multiple surgeries to replace outgrown valves. In this study, we present the in vivo function and growth potential of our tissue-engineered pediatric tubular valve. The valves were fabricated by sewing two decellularized engineered tissue tubes together in a prescribed pattern using degradable sutures and subsequently implanted into the main pulmonary artery of growing lambs. Valve function was monitored using periodic ultrasounds after implantation throughout the duration of the study. The valves functioned well up to 8 weeks, 4 weeks beyond the suture strength half-life, after which their insufficiency index worsened. Histology from the explanted valves revealed extensive host cell invasion within the engineered root and commencing from the leaflet surfaces. These cells expressed multiple phenotypes, including endothelial, and deposited elastin and collagen IV. Although the tubes fused together along the degradable suture line as designed, the leaflets shortened compared to their original height. This shortening is hypothesized to result from inadequate fusion at the commissures prior to suture degradation. With appropriate commissure reinforcement, this novel heart valve may provide the somatic growth potential desired for a pediatric valve replacement.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Akay, H. O., C. A. Ozmen, A. H. Bayrak, S. Senturk, S. Katar, H. Nazaroglu, and M. Taskesen. Diameters of normal thoracic vascular structures in pediatric patients. Surg. Radiol. Anat: SRA 31:801–807, 2009.

    Article  PubMed  Google Scholar 

  2. Cebotari, S., I. Tudorache, A. Ciubotaru, D. Boethig, S. Sarikouch, A. Goerler, A. Lichtenberg, E. Cheptanaru, S. Barnaciuc, A. Cazacu, O. Maliga, O. Repin, L. Maniuc, T. Breymann, and A. Haverich. Use of fresh decellularized allografts for pulmonary valve replacement may reduce the reoperation rate in children and young adults early report. Circulation 124:S115–S123, 2011.

    Article  PubMed  Google Scholar 

  3. Cox, J. L., N. Ad, K. Myers, M. Gharib, and R. C. Quijano. Tubular heart valves: a new tissue prosthesis design–preclinical evaluation of the 3F aortic bioprosthesis. J. Thorac. Cardiovasc. Surg. 130:520–527, 2005.

    Article  PubMed  Google Scholar 

  4. Delmo Walter, E. M., T. M. M. H. de By, R. Meyer, and R. Hetzer. The future of heart valve banking and of homografts: perspective from the Deutsches Herzzentrum Berlin. HSR Proc. Intensive Care Cardiovasc. Anesth. 4:97–108, 2012.

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Driessen-Mol, A., M. Y. Emmert, P. E. Dijkman, L. Frese, B. Sanders, B. Weber, N. Cesarovic, M. Sidler, J. Leenders, R. Jenni, J. Grunenfelder, V. Falk, F. P. Baaijens, and S. P. Hoerstrup. Transcatheter implantation of homologous “off-the-shelf” tissue-engineered heart valves with self-repair capacity: long-term functionality and rapid in vivo remodeling in sheep. J. Am. Coll. Cardiol. 63:1320–1329, 2014.

    Article  PubMed  Google Scholar 

  6. Flanagan, T. C., J. S. Sachweh, J. Frese, H. Schnoring, N. Gronloh, S. Koch, R. H. Tolba, T. Schmitz-Rode, and S. Jockenhoevel. In vivo remodeling and structural characterization of fibrin-based tissue-engineered heart valves in the adult sheep model. Tissue Eng. Part A 15:2965–2976, 2009.

    Article  CAS  PubMed  Google Scholar 

  7. Gottlieb, D., B. Fata, A. J. Powell, C. A. Cois, D. Annese, K. Tandon, G. Stetten, J. E. Mayer, Jr, and M. S. Sacks. Pulmonary artery conduit in vivo dimensional requirements in a growing ovine model: comparisons with the ascending aorta. J. Heart Valve Dis. 22:195–203, 2013.

    PubMed  Google Scholar 

  8. Gottlieb, D., T. Kunal, S. Emani, E. Aikawa, D. W. Brown, A. J. Powell, A. Nedder, G. C. Engelmayr, Jr, J. M. Melero-Martin, M. S. Sacks, and J. E. Mayer, Jr. In vivo monitoring of function of autologous engineered pulmonary valve. J. Thorac. Cardiovasc. Surg. 139:723–731, 2010.

    Article  PubMed  Google Scholar 

  9. Hoerstrup, S. P., R. Sodian, S. Daebritz, J. Wang, E. A. Bacha, D. P. Martin, A. M. Moran, K. J. Guleserian, J. S. Sperling, S. Kaushal, J. P. Vacanti, F. J. Schoen, and J. E. Mayer. Functional living trileaflet heart valves grown in vitro. Circulation 102:III44–II49, 2000.

    Article  CAS  PubMed  Google Scholar 

  10. Jacobs, J. P., C. Mavroudis, J. A. Quintessenza, P. J. Chai, S. K. Pasquali, K. D. Hill, L. A. Vricella, M. L. Jacobs, J. A. Dearani, and D. Cameron. Reoperations for pediatric and congenital heart disease: an analysis of the Society of Thoracic Surgeons (STS) congenital heart surgery database. Semin. Thorac. Cardiovasc. Surg. Pediatr. Cardiac Surg. Annu. 17:2–8, 2014.

    Article  Google Scholar 

  11. Kheradvar, A., E. M. Groves, L. P. Dasi, S. H. Alavi, R. Tranquillo, K. J. Grande-Allen, C. A. Simmons, B. Griffith, A. Falahatpisheh, C. J. Goergen, M. R. Mofrad, F. Baaijens, S. H. Little, and S. Canic. Emerging trends in heart valve engineering: Part I. Solutions for future. Ann. Biomed. Eng. 43:833–843, 2015.

    Article  PubMed  Google Scholar 

  12. Kim, Y. J., R. L. Sah, J. Y. Doong, and A. J. Grodzinsky. Fluorometric assay of DNA in cartilage explants using Hoechst 33258. Anal. Biochem. 174:168–176, 1988.

    Article  CAS  PubMed  Google Scholar 

  13. Maxon Monofilament Synthetic Absorbable Suture. 2008.

  14. Mozaffarian, D., E. J. Benjamin, A. S. Go, D. K. Arnett, M. J. Blaha, M. Cushman, S. de Ferranti, J. P. Despres, H. J. Fullerton, V. J. Howard, M. D. Huffman, S. E. Judd, B. M. Kissela, D. T. Lackland, J. H. Lichtman, L. D. Lisabeth, S. Liu, R. H. Mackey, D. B. Matchar, D. K. McGuire, E. R. Mohler, 3rd, C. S. Moy, P. Muntner, M. E. Mussolino, K. Nasir, R. W. Neumar, G. Nichol, L. Palaniappan, D. K. Pandey, M. J. Reeves, C. J. Rodriguez, P. D. Sorlie, J. Stein, A. Towfighi, T. N. Turan, S. S. Virani, J. Z. Willey, D. Woo, R. W. Yeh, and M. B. Turner. Heart disease and stroke statistics—2015 update: a report from the American Heart Association. Circulation 131:e29–322, 2015.

    Article  PubMed  Google Scholar 

  15. Protopapas, A. D., and T. Athanasiou. Contegra conduit for reconstruction of the right ventricular outflow tract: a review of published early and mid-time results. J. Cardiothorac. Surg. 3:62, 2008.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Quality A. f. H. R. A. Healthcare Cost and Utilization Project (HCUP). 2014.

  17. Raymond, T. E., J. E. Khabbaza, R. Yadav, and A. R. Tonelli. Significance of main pulmonary artery dilation on imaging studies. Ann. Am. Thorac. Soc. 11:1623–1632, 2014.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Reimer, J. M., Z. H. Syedain, B. H. Haynie, and R. T. Tranquillo. Pediatric tubular pulmonary heart valve from decellularized engineered tissue tubes. Biomaterials 62:88–94, 2015.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Ruzmetov, M., J. J. Shah, D. M. Geiss, and R. S. Fortuna. Decellularized versus standard cryopreserved valve allografts for right ventricular outflow tract reconstruction: a single-institution comparison. J. Thorac. Cardiovasc. Surg. 143:543–549, 2012.

    Article  PubMed  Google Scholar 

  20. Schmidt, D., P. E. Dijkman, A. Driessen-Mol, R. Stenger, C. Mariani, A. Puolakka, M. Rissanen, T. Deichmann, B. Odermatt, B. Weber, M. Y. Emmert, G. Zund, F. P. T. Baaijens, and S. P. Hoerstrup. Minimally-invasive implantation of living tissue engineered heart valves. J. Am. Coll. Cardiol. 56:510–520, 2010.

    Article  PubMed  Google Scholar 

  21. Starcher, B. C., and M. J. Galione. Purification and comparison of elastins from different animal species. Anal. Biochem. 74:441–447, 1976.

    Article  CAS  PubMed  Google Scholar 

  22. Stegemann, H., and K. Stalder. Determination of hydroxyproline. Clin. Chim. Acta 18:267–273, 1967.

    Article  CAS  PubMed  Google Scholar 

  23. Syedain, Z. H., M. T. Lahti, S. L. Johnson, P. S. Robinson, G. R. Ruth, R. W. Bianco, and R. T. Tranquillo. Implantation of a tissue-engineered heart valve from human fibroblasts exhibiting short term function in the sheep pulmonary artery. Cardiovasc. Eng. Technol. 2:101–112, 2011.

    Article  Google Scholar 

  24. Syedain, Z. H., L. A. Meier, J. W. Bjork, A. Lee, and R. T. Tranquillo. Implantable arterial grafts from human fibroblasts and fibrin using a multi-graft pulsed flow-stretch bioreactor with noninvasive strength monitoring. Biomaterials 32:714–722, 2011.

    Article  CAS  PubMed  Google Scholar 

  25. Syedain, Z. H., L. A. Meier, J. M. Reimer, and R. T. Tranquillo. Tubular heart valves from decellularized engineered tissue. Ann. Biomed. Eng. 41:2645–2654, 2013.

    Article  PubMed  Google Scholar 

  26. Syedain Z., J. Reimer, M. Lahti, J. Berry, R. Bianco and R. Tranquillo. 50-week implant of a tissue-engineered pulmonary conduit in a growing lamb model. In: 2015 4th TERMIS World Congress. Boston, MA: Tissue Engineering Part A, 2015, p. s-82.

  27. Syedain, Z., J. Reimer, J. Schmidt, M. Lahti, J. Berry, R. Bianco, and R. T. Tranquillo. 6-Month aortic valve implantation of an off-the-shelf tissue-engineered valve in sheep. Biomaterials 73:175–184, 2015.

    Article  CAS  PubMed  Google Scholar 

  28. Tudorache, I., S. Cebotari, G. Sturz, L. Kirsch, C. Hurschler, A. Hilfiker, A. Haverich, and A. Lichtenberg. Tissue engineering of heart valves: biomechanical and morphological properties of decellularized heart valves. J. Heart Valve Dis. 16:567–573, 2007.

    PubMed  Google Scholar 

  29. Weber, M., E. Heta, R. Moreira, V. N. Gesche, T. Schermer, J. Frese, S. Jockenhoevel, and P. Mela. Tissue-engineered fibrin-based heart valve with a tubular leaflet design. Tissue Eng. Part C Methods 20:265–275, 2014.

    Article  CAS  PubMed  Google Scholar 

  30. Weber, B., J. Scherman, M. Y. Emmert, J. Gruenenfelder, R. Verbeek, M. Bracher, M. Black, J. Kortsmit, T. Franz, R. Schoenauer, L. Baumgartner, C. Brokopp, I. Agarkova, P. Wolint, G. Zund, V. Falk, P. Zilla, and S. P. Hoerstrup. Injectable living marrow stromal cell-based autologous tissue engineered heart valves: first experiences with a one-step intervention in primates. Eur. Heart J. 32:2830–2840, 2011.

    Article  PubMed  Google Scholar 

  31. Zubairi, R., S. Malik, R. D. Jaquiss, M. Imamura, J. Gossett, and W. R. Morrow. Risk factors for prosthesis failure in pulmonary valve replacement. Ann. Thorac. Surg. 91:561–565, 2011.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

The authors acknowledge technical assistance from Sandy Johnson, Naomi Ferguson, Susan Saunders, the UMN Medical Devices Center, and the staff of the UMN Experimental Surgical Services and funding from NIH R01 HL107572 to R.T.T.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert Tranquillo.

Additional information

Associate Editor Lakshmi Prasad Dasi oversaw the review of this article.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 202 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Reimer, J., Syedain, Z., Haynie, B. et al. Implantation of a Tissue-Engineered Tubular Heart Valve in Growing Lambs. Ann Biomed Eng 45, 439–451 (2017). https://doi.org/10.1007/s10439-016-1605-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-016-1605-7

Keywords

Navigation