Skip to main content

Advertisement

Log in

Innovative Clinical Trial Designs for Precision Medicine in Heart Failure with Preserved Ejection Fraction

  • Original Article
  • Published:
Journal of Cardiovascular Translational Research Aims and scope Submit manuscript

Abstract

A major challenge in the care of patients with heart failure and preserved ejection fraction (HFpEF) is the lack of proven therapies due to disappointing results from randomized controlled trials (RCTs). The heterogeneity of the HFpEF syndrome and the use of conventional RCT designs are possible reasons underlying the failure of these trials. There are several factors—including the widespread adoption of electronic health records, decreasing costs of obtaining high-dimensional data, and the availability of a wide variety of potential therapeutics—that have evolved to enable more innovative clinical trial designs in HFpEF. Here, we review the current landscape of HFpEF RCTs and present several innovative RCT designs that could be implemented in HFpEF, including enrichment trials, adaptive trials, umbrella trials, basket trials, and machine learning-based trials (including examples for each). Our hope is that the description of the aforementioned innovative trial designs will stimulate new approaches to clinical trials in HFpEF.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Shah, S. J., Kitzman, D. W., Borlaug, B. A., van Heerebeek, L., Zile, M. R., Kass, D. A., et al. (2016). Phenotype-specific treatment of heart failure with preserved ejection fraction: a multiorgan roadmap. Circulation, 134(1), 73–90.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Adamson, P. B., Abraham, W. T., Bourge, R. C., Costanzo, M. R., Hasan, A., Yadav, C., et al. (2014). Wireless pulmonary artery pressure monitoring guides management to reduce decompensation in heart failure with preserved ejection fraction. Circulation. Heart Failure, 7(6), 935–944.

    Article  PubMed  Google Scholar 

  3. Pfeffer, M. A., Claggett, B., Assmann, S. F., Boineau, R., Anand, I. S., Clausell, N., et al. (2015). Regional variation in patients and outcomes in the treatment of preserved cardiac function heart failure with an aldosterone antagonist (TOPCAT) trial. Circulation, 131(1), 34–42.

    Article  CAS  PubMed  Google Scholar 

  4. Pitt, B., Pfeffer, M. A., Assmann, S. F., Boineau, R., Anand, I. S., Claggett, B., et al. (2014). Spironolactone for heart failure with preserved ejection fraction. The New England Journal of Medicine, 370(15), 1383–1392.

    Article  CAS  PubMed  Google Scholar 

  5. Shah, S. J. (2017). Precision medicine for heart failure with preserved ejection fraction: an overview. J Cardiovasc Transl Res, (in press).

  6. Shah, S. J. (2013). Matchmaking for the optimization of clinical trials of heart failure with preserved ejection fraction: no laughing matter. Journal of the American College of Cardiology, 62(15), 1339–1342.

    Article  PubMed  Google Scholar 

  7. Shah, S. J., Katz, D. H., & Deo, R. C. (2014). Phenotypic spectrum of heart failure with preserved ejection fraction. Heart Failure Clinics, 10(3), 407–418.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Ford, I., & Norrie, J. (2016). Pragmatic trials. The New England Journal of Medicine, 375(5), 454–463.

    Article  PubMed  Google Scholar 

  9. Lund, L. H., Oldgren, J., & James, S. (2017). Registry-based pragmatic trials in heart failure: Current experience and future directions. Current Heart Failure Reports, 14(2), 59–70.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Senni, M., Paulus, W. J., Gavazzi, A., Fraser, A. G., Diez, J., Solomon, S. D., et al. (2014). New strategies for heart failure with preserved ejection fraction: The importance of targeted therapies for heart failure phenotypes. European Heart Journal, 35(40), 2797–2815.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Jonnalagadda, S. R., Adupa, A. K., Garg, R. P., Corona-Cox, J., & Shah, S. J. (2017). Text mining of the electronic health record: an information extraction approach for the automated identification and subphenotyping of HFpEF patients for clinical trials. Journal of Cardiovascular Translational Research, in press.

  12. Website. http://www.pubmed.gov (search term: (hfpef [ti] OR “diastolic heart failure” [ti] OR “preserved ejection fraction” [ti]) AND review [pt])). Accessed 20 May 2017.

  13. Butler, J., Fonarow, G. C., Zile, M. R., Lam, C. S., Roessig, L., Schelbert, E. B., et al. (2014). Developing therapies for heart failure with preserved ejection fraction: current state and future directions. JACC Heart Failure, 2(2), 97–112.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Senni, M., Greene, S. J., Butler, J., Fonarow, G. C., & Gheorghiade, M. (2017). Drug development for heart failure with preserved ejection fraction: what pieces are missing from the puzzle? The Canadian Journal of Cardiology, 33(6), 768–776.

    Article  PubMed  Google Scholar 

  15. Borlaug, B. A. (2014). The pathophysiology of heart failure with preserved ejection fraction. Nature Reviews. Cardiology, 11(9), 507–515.

    Article  CAS  PubMed  Google Scholar 

  16. Borlaug, B. A., & Paulus, W. J. (2011). Heart failure with preserved ejection fraction: Pathophysiology, diagnosis, and treatment. European Heart Journal, 32(6), 670–679.

    Article  PubMed  Google Scholar 

  17. Paulus, W. J., & Tschope, C. (2013). A novel paradigm for heart failure with preserved ejection fraction: comorbidities drive myocardial dysfunction and remodeling through coronary microvascular endothelial inflammation. Journal of the American College of Cardiology, 62(4), 263–271.

    Article  PubMed  Google Scholar 

  18. Maurer, M. S., Elliott, P., Merlini, G., Shah, S. J., Waddington Cruz, M., Flynn, A., et al. (2017). Design and rationale of the phase 3 Tafamidis in ATTR-ACT (Transthyretin Cardiomyopathy Clinical Trial). Circulation. Heart Failure, in press.

  19. Olivotto, I., Hellawell, J. L., Farzaneh-Far, R., Blair, C., Coppini, R., Myers, J., et al. (2016). Novel approach targeting the complex pathophysiology of hypertrophic cardiomyopathy: The impact of late sodium current inhibition on exercise capacity in subjects with symptomatic hypertrophic cardiomyopathy (LIBERTY-HCM) trial. Circulation. Heart Failure, 9(3), e002764.

    Article  PubMed  Google Scholar 

  20. Van Tassell, B. W., Buckley, L. F., Carbone, S., Trankle, C. R., Canada, J. M., Dixon, D. L., et al. (2017). Interleukin-1 blockade in heart failure with preserved ejection fraction: rationale and design of the Diastolic Heart Failure Anakinra Response Trial 2 (D-HART2). Clinical Cardiology.

  21. Biankin, A. V., Piantadosi, S., & Hollingsworth, S. J. (2015). Patient-centric trials for therapeutic development in precision oncology. Nature, 526(7573), 361–370.

    Article  CAS  PubMed  Google Scholar 

  22. Hollingsworth, S. J., & Biankin, A. V. (2015). The challenges of precision oncology drug development and implementation. Public Health Genomics, 18(6), 338–348.

    Article  PubMed  Google Scholar 

  23. Jurgensmeier, J. M., Eder, J. P., & Herbst, R. S. (2014). New strategies in personalized medicine for solid tumors: Molecular markers and clinical trial designs. Clinical Cancer Research, 20(17), 4425–4435.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Barzilai, N., Crandall, J. P., Kritchevsky, S. B., & Espeland, M. A. (2016). Metformin as a tool to target aging. Cell Metabolism, 23(6), 1060–1065.

    Article  CAS  PubMed  Google Scholar 

  25. Feldman, T., Komtebedde, J., Burkhoff, D., Massaro, J., Maurer, M. S., Leon, M. B., et al. (2016). Transcatheter interatrial shunt device for the treatment of heart failure: rationale and design of the randomized trial to REDUCE elevated left atrial pressure in heart failure (REDUCE LAP-HF I). Circulation. Heart Failure, 9(7).

  26. Cleland, J. G., Tendera, M., Adamus, J., Freemantle, N., Polonski, L., Taylor, J., et al. (2006). The perindopril in elderly people with chronic heart failure (PEP-CHF) study. European Heart Journal, 27(19), 2338–2345.

    Article  CAS  PubMed  Google Scholar 

  27. Yusuf, S., Pfeffer, M. A., Swedberg, K., Granger, C. B., Held, P., McMurray, J. J., et al. (2003). Effects of candesartan in patients with chronic heart failure and preserved left-ventricular ejection fraction: the CHARM-preserved trial. Lancet, 362(9386), 777–781.

    Article  CAS  PubMed  Google Scholar 

  28. Massie, B. M., Carson, P. E., McMurray, J. J., Komajda, M., McKelvie, R., Zile, M. R., et al. (2008). Irbesartan in patients with heart failure and preserved ejection fraction. The New England Journal of Medicine, 359(23), 2456–2467.

    Article  CAS  PubMed  Google Scholar 

  29. Bhatt, D. L., & Mehta, C. (2016). Adaptive designs for clinical trials. The New England Journal of Medicine, 375(1), 65–74.

    Article  PubMed  Google Scholar 

  30. Gallo, P., Chuang-Stein, C., Dragalin, V., Gaydos, B., Krams, M., Pinheiro, J., et al. (2006). Adaptive designs in clinical drug development—an executive summary of the PhRMA working group. Journal of Biopharmaceutical Statistics, 16(3), 275–283 discussion 285-291, 293-278, 311-272.

    Article  PubMed  Google Scholar 

  31. Hung, H. M., Wang, S. J., & O’Neill, R. (2007). Statistical considerations for testing multiple endpoints in group sequential or adaptive clinical trials. Journal of Biopharmaceutical Statistics, 17(6), 1201–1210.

    Article  PubMed  Google Scholar 

  32. Thall, P., Fox, P., & Wathen, J. (2015). Statistical controversies in clinical research: scientific and ethical problems with adaptive randomization in comparative clinical trials. Annals of Oncology, 26(8), 1621–1628.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Wang, S. J. (2010). Perspectives on the use of adaptive designs in clinical trials. Part I. Statistical considerations and issues. Journal of Biopharmaceutical Statistics, 20(6), 1090–1097.

    Article  PubMed  Google Scholar 

  34. Stallard, N., & Todd, S. (2011). Seamless phase II/III designs. Statistical Methods in Medical Research, 20(6), 623–634.

    Article  PubMed  Google Scholar 

  35. Bristow, M. R., Enciso, J. S., Gersh, B. J., Grady, C., Rice, M. M., Singh, S., et al. (2016). Detection and management of geographic disparities in the TOPCAT trial: lessons learned and derivative recommendations. JACC: Basic to Translational Science, 1(3), 180–189.

    PubMed  PubMed Central  Google Scholar 

  36. Pieske, B., Maggioni, A. P., Lam, C. S. P., Pieske-Kraigher, E., Filippatos, G., Butler, J., et al. (2017). Vericiguat in patients with worsening chronic heart failure and preserved ejection fraction: results of the SOluble guanylate cyclase stimulatoR in heArT failurE patientS with PRESERVED EF (SOCRATES-PRESERVED) study. European Heart Journal, 38(15), 1119–1127.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Pieske, B., Butler, J., Filippatos, G., Lam, C., Maggioni, A. P., Ponikowski, P., et al. (2014). Rationale and design of the SOluble guanylate cyclase stimulatoR in heArT failurE studies (SOCRATES). European Journal of Heart Failure, 16(9), 1026–1038.

    Article  CAS  PubMed  Google Scholar 

  38. Solomon, S. D., Zile, M., Pieske, B., Voors, A., Shah, A., Kraigher-Krainer, E., et al. (2012). The angiotensin receptor neprilysin inhibitor LCZ696 in heart failure with preserved ejection fraction: a phase 2 double-blind randomised controlled trial. Lancet, 380(9851), 1387–1395.

    Article  CAS  PubMed  Google Scholar 

  39. Wang, J., Chow, S. C., & Chang, M. (2016). Biomarker-driven adaptive Design for Precision Medicine. Journal of Translational Biomarkers & Diagnosis, 2, 15–24.

    Google Scholar 

  40. Shah, S. J., Cogswell, R., Ryan, J. J., & Sharma, K. (2016). How to develop and implement a specialized heart failure with preserved ejection fraction clinical program. Current Cardiology Reports, 18(12), 122.

    Article  PubMed  Google Scholar 

  41. Obokata, M., Reddy, Y. N., Pislaru, S. V., Melenovsky, V., & Borlaug, B. A. (2017). Evidence supporting the existence of a distinct obese phenotype of heart failure with preserved ejection fraction. Circulation.

  42. Kitzman, D. W., & Shah, S. J. (2016). The HFpEF obesity phenotype: the elephant in the room. Journal of the American College of Cardiology, 68(2), 200–203.

    Article  PubMed  Google Scholar 

  43. Meltzer, H. Y., & Roth, B. L. (2013). Lorcaserin and pimavanserin: emerging selectivity of serotonin receptor subtype-targeted drugs. The Journal of Clinical Investigation, 123(12), 4986–4991.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Shukla, A. P., Kumar, R. B., & Aronne, L. J. (2015). Lorcaserin Hcl for the treatment of obesity. Expert Opinion on Pharmacotherapy, 16(16), 2531–2538.

    Article  CAS  PubMed  Google Scholar 

  45. Kim, J., Moon, B. S., Lee, B. C., Lee, H. Y., Kim, H. J., Choo, H., et al. (2017). A potential PET radiotracer for the 5-HT2C receptor: synthesis and in vivo evaluation of 4-(3-[18F]fluorophenethoxy)pyrimidine. ACS Chemical Neuroscience, 8(5), 996–1003.

    Article  CAS  PubMed  Google Scholar 

  46. Lim, S. L., Lam, C. S., Segers, V. F., Brutsaert, D. L., & De Keulenaer, G. W. (2015). Cardiac endothelium-myocyte interaction: clinical opportunities for new heart failure therapies regardless of ejection fraction. European Heart Journal, 36(31), 2050–2060.

    Article  CAS  PubMed  Google Scholar 

  47. Crea, F., Bairey Merz, C. N., Beltrame, J. F., Kaski, J. C., Ogawa, H., Ong, P., et al. (2017). The parallel tales of microvascular angina and heart failure with preserved ejection fraction: a paradigm shift. European Heart Journal, 38(7), 473–477.

    PubMed  Google Scholar 

  48. Lam, C. S., & Lund, L. H. (2016). Microvascular endothelial dysfunction in heart failure with preserved ejection fraction. Heart, 102(4), 257–259.

    Article  CAS  PubMed  Google Scholar 

  49. Giamouzis, G., Schelbert, E. B., & Butler, J. (2016). Growing evidence linking microvascular dysfunction with heart failure with preserved ejection fraction. Journal of the American Heart Association, 5(2).

  50. Bairey Merz, C. N., Pepine, C. J., Walsh, M. N., & Fleg, J. L. (2017). Ischemia and no obstructive coronary artery disease (INOCA): developing evidence-based therapies and research agenda for the next decade. Circulation, 135(11), 1075–1092.

    Article  PubMed  Google Scholar 

  51. Desai, C. S., Lee, D. C., & Shah, S. J. (2011). Systemic sclerosis and the heart: current diagnosis and management. Current Opinion in Rheumatology, 23(6), 545–554.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Deo, R. C. (2015). Machine learning in medicine. Circulation, 132(20), 1920–1930.

    Article  PubMed  Google Scholar 

  53. Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A. A., Veness, J., Bellemare, M. G., et al. (2015). Human-level control through deep reinforcement learning. Nature, 518(7540), 529–533.

    Article  CAS  PubMed  Google Scholar 

  54. Zeevi, D., Korem, T., Zmora, N., Israeli, D., Rothschild, D., Weinberger, A., et al. (2015). Personalized nutrition by prediction of glycemic responses. Cell, 163(5), 1079–1094.

    Article  CAS  PubMed  Google Scholar 

  55. Silver, D., Huang, A., Maddison, C. J., Guez, A., Sifre, L., van den Driessche, G., et al. (2016). Mastering the game of go with deep neural networks and tree search. Nature, 529(7587), 484–489.

    Article  CAS  PubMed  Google Scholar 

  56. Zhao, Y., Kosorok, M. R., & Zeng, D. (2009). Reinforcement learning design for cancer clinical trials. Statistics in Medicine, 28(26), 3294–3315.

    Article  PubMed  PubMed Central  Google Scholar 

  57. Zhao, Y., Zeng, D., Socinski, M. A., & Kosorok, M. R. (2011). Reinforcement learning strategies for clinical trials in nonsmall cell lung cancer. Biometrics, 67(4), 1422–1433.

    Article  PubMed  PubMed Central  Google Scholar 

  58. Trusheim, M. R., Shrier, A. A., Antonijevic, Z., Beckman, R. A., Campbell, R. K., Chen, C., et al. (2016). PIPELINEs: creating comparable clinical knowledge efficiently by linking trial platforms. Clinical Pharmacology and Therapeutics, 100(6), 713–729.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Ma, J., Hobbs, B. P., & Stingo, F. C. (2015). Statistical methods for establishing personalized treatment rules in oncology. BioMed Research International, 2015, 670691.

    PubMed  PubMed Central  Google Scholar 

  60. Rothwell, P. M. (2005). Treating individuals 2. Subgroup analysis in randomised controlled trials: Importance, indications, and interpretation. Lancet, 365(9454), 176–186.

    Article  PubMed  Google Scholar 

  61. Burke, J. F., Sussman, J. B., Kent, D. M., & Hayward, R. A. (2015). Three simple rules to ensure reasonably credible subgroup analyses. BMJ, 351, h5651.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sanjiv J. Shah.

Ethics declarations

Funding

Dr. Shah is supported by the National Institutes of Health R01 HL107577 and R01 HL127028 and American Heart Association No. 16SFRN28780016 and No. 15CVGPSD27260148.

Conflict of Interest

Dr. Shah has received research grants from Actelion, AstraZeneca, Corvia, and Novartis and consulting fees from Actelion, Amgen, AstraZeneca, Bayer, Boehringer-Ingelheim, Cardiora, Eisai, Ironwood, Merck, Novartis, Sanofi, and United Therapeutics.

Ethical Approval

This review article does not contain any primary data from studies with human participants or animals performed by the author.

Additional information

Editor Enrique Lara-Pezzi oversaw the review of this article

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shah, S.J. Innovative Clinical Trial Designs for Precision Medicine in Heart Failure with Preserved Ejection Fraction. J. of Cardiovasc. Trans. Res. 10, 322–336 (2017). https://doi.org/10.1007/s12265-017-9759-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12265-017-9759-8

Keywords

Navigation