Skip to main content

Advertisement

Log in

Precision Medicine for Heart Failure with Preserved Ejection Fraction: An Overview

  • Original Article
  • Published:
Journal of Cardiovascular Translational Research Aims and scope Submit manuscript

Abstract

There are few proven therapies for heart failure with preserved ejection fraction (HFpEF). The lack of therapies, along with increased recognition of the disorder and its underlying pathophysiology, has led to the acknowledgement that HFpEF is heterogeneous and is not likely to respond to a one-size-fits-all approach. Thus, HFpEF is a prime candidate to benefit from a precision medicine approach. For this reason, we have assembled a compendium of papers on the topic of precision medicine in HFpEF in the Journal of Cardiovascular Translational Research. These papers cover a variety of topics relevant to precision medicine in HFpEF, including automated identification of HFpEF patients; machine learning, novel molecular approaches, genomics, and deep phenotyping of HFpEF; and clinical trial designs that can be used to advance precision medicine in HFpEF. In this introductory article, we provide an overview of precision medicine in HFpEF with the hope that the work described here and in the other papers in this special theme issue will stimulate investigators and clinicians to advance a more targeted approach to HFpEF classification and treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Shah, S. H., Arnett, D., Houser, S. R., & Ginsburg, G. S. (2016). Opportunities for the cardiovascular community in the precision medicine initiative. Circulation, 133, 226–231.

    Article  PubMed  Google Scholar 

  2. Shah, S. J., Katz, D. H., & Deo, R. C. (2014). Phenotypic spectrum of heart failure with preserved ejection fraction. Heart Failure Clinics, 10(3), 407–418.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Bordicchia, M., Liu, D., Amri, E. Z., Ailhaud, G., Dessi-Fulgheri, P., Zhang, C., et al. (2012). Cardiac natriuretic peptides act via p38 MAPK to induce the brown fat thermogenic program in mouse and human adipocytes. The Journal of Clinical Investigation, 122(3), 1022–1036.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Deo, R. C. (2015). Machine learning in medicine. Circulation, 132(20), 1920–1930.

    Article  PubMed  Google Scholar 

  5. Chirinos, J. A. (2017). Deep phenotyping of systemic arterial hemodynamics in HFpEF (part 2): clinical and therapeutic considerations. Journal of Cardiovascular Translational Research. doi:10.1007/s12265-017-9736-2.

  6. Chirinos, J. A. (2017). Deep phenotyping of systemic arterial hemodynamics in HFpEF (part 1): physiologic and technical considerations. Journal of Cardiovascular Translational Research. doi:10.1007/s12265-017-9735-3.

  7. Kao, D. P., Stevens, L. M., Hinterberg, M. A., & Gorg, C. (2017). Phenotype-specific association of single-nucleotide polymorphisms with heart failure and preserved ejection fraction: a genome-wide association analysis of the cardiovascular health study. Journal of Cardiovascular Translational Research. doi:10.1007/s12265-017-9729-1.

  8. Katz, D. H., Deo, R. C., Aguilar, F. G., Selvaraj, S., Martinez, E. E., Beussink-Nelson, L., et al. (2017). Phenomapping for the identification of hypertensive patients with the myocardial substrate for heart failure with preserved ejection fraction. Journal of Cardiovascular Translational Research. doi:10.1007/s12265-017-9739-z.

  9. Kriegel, A. J., Gartz, M., Afzal, M. Z., de Lange, W. J., Ralphe, J. C., & Strande, J. L. (2016). Molecular approaches in HFpEF: microRNAs and iPSC-Derived cardiomyocytes. Journal of Cardiovascular Translational Research. doi:10.1007/s12265-016-9723-z.

  10. Luo, Y., Ahmad, F. S., & Shah, S. J. (2017). Tensor factorization for precision medicine in heart failure with preserved ejection fraction. Journal of Cardiovascular Translational Research. doi:10.1007/s12265-016-9727-8.

  11. Jonnalagadda, S. R., Adupa, A. K., Garg, R. P., Corona-Cox, J., & Shah, S. J. (2017). Text mining of the electronic health record: an information extraction approach for the automated identification and subphenotyping of HFpEF patients for clinical trials. Journal of Cardiovascular Translational Research. (In press).

  12. Shah, S. J. (2017). Innovative clinical trial designs for precision medicine in heart failure with preserved ejection fraction. Journal of Cardiovascular Translational Research. (In press).

  13. Redfield, M. M. (2016). Heart failure with preserved ejection fraction. The New England Journal of Medicine, 375(19), 1868–1877.

    Article  PubMed  Google Scholar 

  14. Roger, V. L. (2013). Epidemiology of heart failure. Circulation Research, 113(6), 646–659.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Oktay, A. A., Rich, J. D., & Shah, S. J. (2013). The emerging epidemic of heart failure with preserved ejection fraction. Current Heart Failure Reports, 10(4), 401–410.

    Article  PubMed  Google Scholar 

  16. Shah, S. J., Heitner, J. F., Sweitzer, N. K., Anand, I. S., Kim, H. Y., Harty, B., et al. (2013). Baseline characteristics of patients in the treatment of preserved cardiac function heart failure with an aldosterone antagonist trial. Circulation. Heart Failure, 6(2), 184–192.

    Article  CAS  PubMed  Google Scholar 

  17. Owan, T. E., Hodge, D. O., Herges, R. M., Jacobsen, S. J., Roger, V. L., & Redfield, M. M. (2006). Trends in prevalence and outcome of heart failure with preserved ejection fraction. The New England Journal of Medicine, 355(3), 251–259.

    Article  CAS  PubMed  Google Scholar 

  18. Sharma, K., & Kass, D. A. (2014). Heart failure with preserved ejection fraction: mechanisms, clinical features, and therapies. Circulation Research, 115(1), 79–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Pitt, B., Pfeffer, M. A., Assmann, S. F., Boineau, R., Anand, I. S., Claggett, B., et al. (2014). Spironolactone for heart failure with preserved ejection fraction. The New England Journal of Medicine, 370(15), 1383–1392.

    Article  CAS  PubMed  Google Scholar 

  20. Adamson, P. B., Abraham, W. T., Bourge, R. C., Costanzo, M. R., Hasan, A., Yadav, C., et al. (2014). Wireless pulmonary artery pressure monitoring guides management to reduce decompensation in heart failure with preserved ejection fraction. Circulation. Heart Failure, 7(6), 935–944.

    Article  PubMed  Google Scholar 

  21. Yusuf, S., Pfeffer, M. A., Swedberg, K., Granger, C. B., Held, P., McMurray, J. J., et al. (2003). Effects of candesartan in patients with chronic heart failure and preserved left-ventricular ejection fraction: the CHARM-preserved trial. Lancet, 362(9386), 777–781.

    Article  CAS  PubMed  Google Scholar 

  22. Massie, B. M., Carson, P. E., McMurray, J. J., Komajda, M., McKelvie, R., Zile, M. R., et al. (2008). Irbesartan in patients with heart failure and preserved ejection fraction. The New England Journal of Medicine, 359(23), 2456–2467.

    Article  CAS  PubMed  Google Scholar 

  23. Redfield, M. M., Chen, H. H., Borlaug, B. A., Semigran, M. J., Lee, K. L., Lewis, G., et al. (2013). Effect of phosphodiesterase-5 inhibition on exercise capacity and clinical status in heart failure with preserved ejection fraction: a randomized clinical trial. JAMA, 309(12), 1268–1277.

    Article  CAS  PubMed  Google Scholar 

  24. Redfield, M. M., Anstrom, K. J., Levine, J. A., Koepp, G. A., Borlaug, B. A., Chen, H. H., et al. (2015). Isosorbide mononitrate in heart failure with preserved ejection fraction. The New England Journal of Medicine, 373(24), 2314–2324.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Shah, S. J., Kitzman, D. W., Borlaug, B. A., van Heerebeek, L., Zile, M. R., Kass, D. A., et al. (2016). Phenotype-specific treatment of heart failure with preserved ejection fraction: a multiorgan roadmap. Circulation, 134(1), 73–90.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Kitzman, D. W., & Shah, S. J. (2016). The HFpEF obesity phenotype: the elephant in the room. Journal of the American College of Cardiology, 68(2), 200–203.

    Article  PubMed  Google Scholar 

  27. Borlaug, B. A. (2014). The pathophysiology of heart failure with preserved ejection fraction. Nature Reviews. Cardiology, 11(9), 507–515.

    Article  CAS  PubMed  Google Scholar 

  28. Shah, S. J., Cogswell, R., Ryan, J. J., & Sharma, K. (2016). How to develop and implement a specialized heart failure with preserved ejection fraction clinical program. Current Cardiology Reports, 18(12), 122.

    Article  PubMed  Google Scholar 

  29. Shah, S. J. (2013). Matchmaking for the optimization of clinical trials of heart failure with preserved ejection fraction: no laughing matter. Journal of the American College of Cardiology, 62(15), 1339–1342.

    Article  PubMed  Google Scholar 

  30. Burkhoff, D., Maurer, M. S., Joseph, S. M., Rogers, J. G., Birati, E. Y., Rame, J. E., et al. (2015). Left atrial decompression pump for severe heart failure with preserved ejection fraction: theoretical and clinical considerations. JACC Heart Fail, 3(4), 275–282.

    Article  PubMed  Google Scholar 

  31. Kao, D. P., Lewsey, J. D., Anand, I. S., Massie, B. M., Zile, M. R., Carson, P. E., et al. (2015). Characterization of subgroups of heart failure patients with preserved ejection fraction with possible implications for prognosis and treatment response. European Journal of Heart Failure, 17(9), 925–935.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Shah, S. J., Katz, D. H., Selvaraj, S., Burke, M. A., Yancy, C. W., Gheorghiade, M., et al. (2015). Phenomapping for novel classification of heart failure with preserved ejection fraction. Circulation, 131(3), 269–279.

    Article  PubMed  Google Scholar 

  33. LeCun, Y., Bengio, Y., & Hinton, G. (2015). Deep learning. Nature, 521(7553), 436–444.

    Article  CAS  PubMed  Google Scholar 

  34. Esteva, A., Kuprel, B., Novoa, R. A., Ko, J., Swetter, S. M., Blau, H. M., et al. (2017). Dermatologist-level classification of skin cancer with deep neural networks. Nature, 542(7639), 115–118.

    Article  CAS  PubMed  Google Scholar 

  35. Gulshan, V., Peng, L., Coram, M., Stumpe, M. C., Wu, D., Narayanaswamy, A., et al. (2016). Development and validation of a deep learning algorithm for detection of diabetic retinopathy in retinal fundus photographs. JAMA, 316(22), 2402–2410.

    Article  PubMed  Google Scholar 

  36. Miotto, R., Li, L., Kidd, B. A., & Dudley, J. T. (2016). Deep patient: an unsupervised representation to predict the future of patients from the electronic health records. Scientific Reports, 6, 26094.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Paulus, W. J., & Tschope, C. (2013). A novel paradigm for heart failure with preserved ejection fraction: comorbidities drive myocardial dysfunction and remodeling through coronary microvascular endothelial inflammation. Journal of the American College of Cardiology, 62(4), 263–271.

    Article  PubMed  Google Scholar 

  38. Franssen, C., Chen, S., Unger, A., Korkmaz, H. I., De Keulenaer, G. W., Tschope, C., et al. (2016). Myocardial microvascular inflammatory endothelial activation in heart failure with preserved ejection fraction. JACC Heart Fail, 4(4), 312–324.

    Article  PubMed  Google Scholar 

  39. Hall, G., Rowell, J., Farinelli, F., Gbadegesin, R. A., Lavin, P., Wu, G., et al. (2014). Phosphodiesterase 5 inhibition ameliorates angiontensin II-induced podocyte dysmotility via the protein kinase G-mediated downregulation of TRPC6 activity. American Journal of Physiology. Renal Physiology, 306(12), F1442–F1450.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Hidalgo, C., Saripalli, C., & Granzier, H. L. (2014). Effect of exercise training on post-translational and post-transcriptional regulation of titin stiffness in striated muscle of wild type and IG KO mice. Archives of Biochemistry and Biophysics, 552-553, 100–107.

    Article  CAS  PubMed  Google Scholar 

  41. Hoke, N. N., Salloum, F. N., Kass, D. A., Das, A., & Kukreja, R. C. (2012). Preconditioning by phosphodiesterase-5 inhibition improves therapeutic efficacy of adipose-derived stem cells following myocardial infarction in mice. Stem Cells, 30(2), 326–335.

    Article  CAS  PubMed  Google Scholar 

  42. Yin, J., Kukucka, M., Hoffmann, J., Sterner-Kock, A., Burhenne, J., Haefeli, W. E., et al. (2011). Sildenafil preserves lung endothelial function and prevents pulmonary vascular remodeling in a rat model of diastolic heart failure. Circulation. Heart Failure, 4(2), 198–206.

    Article  CAS  PubMed  Google Scholar 

  43. Anjan, V. Y., Loftus, T. M., Burke, M. A., Akhter, N., Fonarow, G. C., Gheorghiade, M., et al. (2012). Prevalence, clinical phenotype, and outcomes associated with normal B-type natriuretic peptide levels in heart failure with preserved ejection fraction. The American Journal of Cardiology, 110(6), 870–876.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Gupta, D. K., & Wang, T. J. (2015). Natriuretic peptides and cardiometabolic health. Circulation Journal, 79(8), 1647–1655.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Khan, A. M., Cheng, S., Magnusson, M., Larson, M. G., Newton-Cheh, C., McCabe, E. L., et al. (2011). Cardiac natriuretic peptides, obesity, and insulin resistance: evidence from two community-based studies. The Journal of Clinical Endocrinology and Metabolism, 96(10), 3242–3249.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Cheng, S., Fox, C. S., Larson, M. G., Massaro, J. M., McCabe, E. L., Khan, A. M., et al. (2011). Relation of visceral adiposity to circulating natriuretic peptides in ambulatory individuals. The American Journal of Cardiology, 108(7), 979–984.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Wang, T. J. (2012). The natriuretic peptides and fat metabolism. The New England Journal of Medicine, 367(4), 377–378.

    Article  CAS  PubMed  Google Scholar 

  48. Newton-Cheh, C., Larson, M. G., Vasan, R. S., Levy, D., Bloch, K. D., Surti, A., et al. (2009). Association of common variants in NPPA and NPPB with circulating natriuretic peptides and blood pressure. Nature Genetics, 41(3), 348–353.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Gupta, D. K., de Lemos, J. A., Ayers, C. R., Berry, J. D., & Wang, T. J. (2015). Racial differences in natriuretic peptide levels: the Dallas heart study. JACC Heart Fail, 3(7), 513–519.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Lam, C. S., Cheng, S., Choong, K., Larson, M. G., Murabito, J. M., Newton-Cheh, C., et al. (2011). Influence of sex and hormone status on circulating natriuretic peptides. Journal of the American College of Cardiology, 58(6), 618–626.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Obokata, M., Reddy, Y. N., Pislaru, S. V., Melenovsky, V., & Borlaug, B. A. (2017). Evidence supporting the existence of a distinct obese phenotype of heart failure with preserved ejection fraction. Circulation. doi:10.1161/CIRCULATIONAHA.116.026807.

  52. Anand, I. S., Claggett, B., Liu, J., Shah, A. M., Rector, T. S., Shah, S. J., et al. (2017). Interaction between spironolactone and natriuretic peptides in patients with heart failure and preserved ejection fraction: from the TOPCAT trial. JACC Heart Fail, 5(4), 241–252.

    Article  PubMed  Google Scholar 

  53. Shah, S. J., Aistrup, G. L., Gupta, D. K., O’Toole, M. J., Nahhas, A. F., Schuster, D., et al. (2014). Ultrastructural and cellular basis for the development of abnormal myocardial mechanics during the transition from hypertension to heart failure. American Journal of Physiology. Heart and Circulatory Physiology, 306(1), H88–100.

    Article  CAS  PubMed  Google Scholar 

  54. Hong, T., & Shaw, R. M. (2017). Cardiac T-tubule microanatomy and function. Physiological Reviews, 97(1), 227–252.

    Article  PubMed  Google Scholar 

  55. Shah, S. J., & Wasserstrom, J. A. (2012). Increased arterial wave reflection magnitude: a novel form of stage B heart failure? Journal of the American College of Cardiology, 60(21), 2178–2181.

    Article  PubMed  Google Scholar 

  56. Riggs, K., Ali, H., Taegtmeyer, H., & Gutierrez, A. D. (2015). The use of SGLT-2 inhibitors in type 2 diabetes and heart failure. Metabolic Syndrome and Related Disorders, 13(7), 292–297.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Unger, E. D., Dubin, R. F., Deo, R., Daruwalla, V., Friedman, J. L., Medina, C., et al. (2016). Association of chronic kidney disease with abnormal cardiac mechanics and adverse outcomes in patients with heart failure and preserved ejection fraction. European Journal of Heart Failure, 18(1), 103–112.

    Article  PubMed  Google Scholar 

  58. Akmal, M., Barndt, R. R., Ansari, A. N., Mohler, J. G., & Massry, S. G. (1995). Excess PTH in CRF induces pulmonary calcification, pulmonary hypertension and right ventricular hypertrophy. Kidney International, 47(1), 158–163.

    Article  CAS  PubMed  Google Scholar 

  59. Polsinelli, V. B., & Shah, S. J. (2017). Advances in the pharmacotherapy of chronic heart failure with preserved ejection fraction: an ideal opportunity for precision medicine. Expert Opinion on Pharmacotherapy, 18(4), 399–409.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sanjiv J. Shah.

Ethics declarations

Funding

Dr. Shah is supported by National Institutes of Health R01 HL107577 and R01 HL127028 and American Heart Association #16SFRN28780016 and #15CVGPSD27260148.

Conflicts of Interest

Dr. Shah has received research grants from Actelion, AstraZeneca, Corvia, and Novartis and consulting fees from Actelion, Amgen, AstraZeneca, Bayer, Boehringer-Ingelheim, Cardiora, Eisai, Ironwood, Merck, MyoKardia, Novartis, Pfizer, Sanofi, and United Therapeutics.

Ethical Approval

This review article does not contain any primary data from studies with human participants or animals performed by the author.

Informed Consent

Not applicable (this paper is a review article with no primary research involved).

Additional information

Associate Editor Daniel P. Judge oversaw the review of this article

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shah, S.J. Precision Medicine for Heart Failure with Preserved Ejection Fraction: An Overview. J. of Cardiovasc. Trans. Res. 10, 233–244 (2017). https://doi.org/10.1007/s12265-017-9756-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12265-017-9756-y

Keywords

Navigation