Skip to main content

Advertisement

Log in

Cardiovascular Bio-Engineering: Current State of the Art

  • Review
  • Published:
Journal of Cardiovascular Translational Research Aims and scope Submit manuscript

Abstract

Despite the introduction of new drugs and innovative devices contributing in the last years to improve patients’ quality of life, morbidity and mortality from cardiovascular diseases remain high. There is an urgent need for addressing the underlying problem of the loss of cardiac or vascular tissues and therefore developing new therapies. Autologous vascular transplants are often limited by poor quality of donor sites and heart organ transplantation by donor shortage. Vascular and cardiac tissue engineering, whose aim is to repair or replace cardiovascular tissues by the use of cells, engineering and materials, as well as biochemical and physicochemical factors, appears in this scenario as a promising tool to repair the damaged hearts and vessels. We will present a general overview on the fundamentals in the area of cardiac and vascular tissue engineering as well as on the latest progresses and challenges.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Nugent, H. M., & Edelman, E. R. (2003). Tissue engineering therapy for cardiovascular disease. Circulation Research, 92(10), 1068–1078. doi:10.1161/01.RES.0000073844.41372.38.

    Article  CAS  PubMed  Google Scholar 

  2. Writing Group, M, Mozaffarian, D., Benjamin, E. J., Go, A. S., Arnett, D. K., Blaha, M. J., et al. (2016). Heart Disease and Stroke Statistics—2016 update: a report from the American Heart Association. Circulation, 133(4), e38–360. doi:10.1161/CIR.0000000000000350.

    Article  Google Scholar 

  3. Sanganalmath, S. K., & Bolli, R. (2013). Cell therapy for heart failure: a comprehensive overview of experimental and clinical studies, current challenges, and future directions. Circulation Research, 113(6), 810–834. doi:10.1161/CIRCRESAHA.113.300219.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Toyoda, Y., Guy, T. S., & Kashem, A. (2013). Present status and future perspectives of heart transplantation. Circulation Journal, 77(5), 1097–1110. doi:10.1253/circj.CJ-13-0296.

    Article  CAS  PubMed  Google Scholar 

  5. Eschenhagen, T., Wakatsuki, T., & Elson, E. L. (1995). A new method to measure isometric force of contraction in embryonic cardiac myocytes. Paper presented at the Second International Conference on Cellular Engineering, LaJolla, August.

  6. Nunez Garcia, A., Sanz-Ruiz, R., Fernandez Santos, M. E., & Fernandez-Aviles, F. (2015). “Second-generation” stem cells for cardiac repair. World J Stem Cells, 7(2), 352–367. doi:10.4252/wjsc.v7.i2.352.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Liau, B., Zhang, D., & Bursac, N. (2012). Functional cardiac tissue engineering. Regenerative Medicine, 7(2), 187–206. doi:10.2217/rme.11.122.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Boheler, K. R., Czyz, J., Tweedie, D., Yang, H. T., Anisimov, S. V., & Wobus, A. M. (2002). Differentiation of pluripotent embryonic stem cells into cardiomyocytes. Circulation Research, 91(3), 189–201.

    Article  CAS  PubMed  Google Scholar 

  9. Takahashi, K., & Yamanaka, S. (2006). Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell, 126(4), 663–676. doi:10.1016/j.cell.2006.07.024.

    Article  CAS  PubMed  Google Scholar 

  10. Lewandowski, J., Kolanowski, T. J., & Kurpisz, M. (2016). Techniques for the induction of human pluripotent stem cell differentiation towards cardiomyocytes. Journal of Tissue Engineering and Regenerative Medicine. doi:10.1002/term.2117.

    PubMed  Google Scholar 

  11. Dai, B., Huang, W., Xu, M., Millard, R. W., Gao, M. H., Hammond, H. K., et al. (2011). Reduced collagen deposition in infarcted myocardium facilitates induced pluripotent stem cell engraftment and angiomyogenesis for improvement of left ventricular function. Journal of the American College of Cardiology, 58(20), 2118–2127. doi:10.1016/j.jacc.2011.06.062.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Mauritz, C., Martens, A., Rojas, S. V., Schnick, T., Rathert, C., Schecker, N., et al. (2011). Induced pluripotent stem cell (iPSC)-derived Flk-1 progenitor cells engraft, differentiate, and improve heart function in a mouse model of acute myocardial infarction. European Heart Journal, 32(21), 2634–2641. doi:10.1093/eurheartj/ehr166.

    Article  CAS  PubMed  Google Scholar 

  13. Iglesias-Garcia, O., Pelacho, B., & Prosper, F. (2013). Induced pluripotent stem cells as a new strategy for cardiac regeneration and disease modeling. Journal of Molecular and Cellular Cardiology, 62, 43–50. doi:10.1016/j.yjmcc.2013.04.022.

    Article  CAS  PubMed  Google Scholar 

  14. Menasche, P. (2008). Skeletal myoblasts and cardiac repair. Journal of Molecular and Cellular Cardiology, 45(4), 545–553. doi:10.1016/j.yjmcc.2007.11.009.

    Article  CAS  PubMed  Google Scholar 

  15. Menasche, P., Alfieri, O., Janssens, S., McKenna, W., Reichenspurner, H., Trinquart, L., et al. (2008). The Myoblast Autologous Grafting in Ischemic Cardiomyopathy (MAGIC) trial: first randomized placebo-controlled study of myoblast transplantation. Circulation, 117(9), 1189–1200. doi:10.1161/CIRCULATIONAHA.107.734103.

    Article  PubMed  Google Scholar 

  16. Jeevanantham, V., Afzal, M. R., Zuba-Surma, E. K., & Dawn, B. (2013). Clinical trials of cardiac repair with adult bone marrow- derived cells. Methods in Molecular Biology, 1036, 179–205. doi:10.1007/978-1-62703-511-8_15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Friedenstein, A. J., Piatetzky II, S., & Petrakova, K. V. (1966). Osteogenesis in transplants of bone marrow cells. Journal of Embryology and Experimental Morphology, 16(3), 381–390.

    CAS  PubMed  Google Scholar 

  18. Bartunek, J., Behfar, A., Dolatabadi, D., Vanderheyden, M., Ostojic, M., Dens, J., et al. (2013). Cardiopoietic stem cell therapy in heart failure: the C-CURE (Cardiopoietic stem Cell therapy in heart failURE) multicenter randomized trial with lineage-specified biologics. Journal of the American College of Cardiology, 61(23), 2329–2338. doi:10.1016/j.jacc.2013.02.071.

    Article  PubMed  Google Scholar 

  19. Beltrami, A. P., Urbanek, K., Kajstura, J., Yan, S. M., Finato, N., Bussani, R., et al. (2001). Evidence that human cardiac myocytes divide after myocardial infarction. The New England Journal of Medicine, 344(23), 1750–1757. doi:10.1056/NEJM200106073442303.

    Article  CAS  PubMed  Google Scholar 

  20. Barile, L., Gherghiceanu, M., Popescu, L. M., Moccetti, T., & Vassalli, G. (2013). Human cardiospheres as a source of multipotent stem and progenitor cells. Stem Cells International, 2013, 916837. doi:10.1155/2013/916837.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. Gyongyosi, M., Wojakowski, W., Lemarchand, P., Lunde, K., Tendera, M., Bartunek, J., et al. (2015). Meta-Analysis of Cell-based CaRdiac stUdiEs (ACCRUE) in patients with acute myocardial infarction based on individual patient data. Circulation Research, 116(8), 1346–1360. doi:10.1161/CIRCRESAHA.116.304346.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. Kervadec, A., Bellamy, V., El Harane, N., Arakélian, L., Vanneaux, V., Cacciapuoti, I., et al. (2016). Cardiovascular progenitor–derived extracellular vesicles recapitulate the beneficial effects of their parent cells in the treatment of chronic heart failure. The Journal of Heart and Lung Transplantation, 35(6), 795–807. doi:10.1016/j.healun.2016.01.013.

    Article  PubMed  Google Scholar 

  23. Lam, M. T., & Wu, J. C. (2012). Biomaterial applications in cardiovascular tissue repair and regeneration. Expert Review of Cardiovascular Therapy, 10(8), 1039–1049. doi:10.1586/erc.12.99.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Hamidi, S., Letourneur, D., Aid-Launais, R., Di Stefano, A., Vainchenker, W., Norol, F., et al. (2014). Fucoidan promotes early step of cardiac differentiation from human embryonic stem cells and long-term maintenance of beating areas. Tissue Engineering. Part A, 20(7–8), 1285–1294. doi:10.1089/ten.TEA.2013.0149.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Levit, R. D., Landazuri, N., Phelps, E. A., Brown, M. E., Garcia, A. J., Davis, M. E., et al. (2013). Cellular encapsulation enhances cardiac repair. Journal of the American Heart Association, 2(5), e000367. doi:10.1161/JAHA.113.000367.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. Pascual-Gil, S., Garbayo, E., Diaz-Herraez, P., Prosper, F., & Blanco-Prieto, M. J. (2015). Heart regeneration after myocardial infarction using synthetic biomaterials. Journal of Controlled Release, 203, 23–38. doi:10.1016/j.jconrel.2015.02.009.

    Article  CAS  PubMed  Google Scholar 

  27. Evans, N. D., Gentleman, E., & Polak, J. M. (2006). Scaffolds for stem cells. Materials Today, 9(12), 26–33. doi:10.1016/S1369-7021(06)71740-0.

    Article  CAS  Google Scholar 

  28. Yi, S., Ding, F., Gong, L., & Gu, X. (2016). Extracellular matrix scaffolds for tissue engineering and regenerative medicine. Current Stem Cell Research & Therapy.

  29. Silva, A. K., Letourneur, D., & Chauvierre, C. (2014). Polysaccharide nanosystems for future progress in cardiovascular pathologies. Theranostics, 4(6), 579–591. doi:10.7150/thno.7688.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Le Visage, C., Gournay, O., Benguirat, N., Hamidi, S., Chaussumier, L., Mougenot, N., et al. (2012). Mesenchymal stem cell delivery into rat infarcted myocardium using a porous polysaccharide-based scaffold: a quantitative comparison with endocardial injection. Tissue Engineering. Part A, 18, 35–44.

    Article  CAS  PubMed  Google Scholar 

  31. Abed, A., Assoul, N., Ba, M., Derkaoui, S. M., Portes, P., Louedec, L., et al. (2011). Influence of polysaccharide composition on the biocompatibility of pullulan/dextran-based hydrogels. Journal of Biomedical Materials Research Part A, 96A(3), 535–542. doi:10.1002/jbm.a.33007.

    Article  CAS  Google Scholar 

  32. Ruvinov, E., & Cohen, S. (2016). Alginate biomaterial for the treatment of myocardial infarction: progress, translational strategies, and clinical outlook: From ocean algae to patient bedside. Advanced Drug Delivery Reviews, 96, 54–76. doi:10.1016/j.addr.2015.04.021.

    Article  CAS  PubMed  Google Scholar 

  33. Ye, K. Y., & Black 3rd, L. D. (2011). Strategies for tissue engineering cardiac constructs to affect functional repair following myocardial infarction. Journal of Cardiovascular Translational Research, 4(5), 575–591. doi:10.1007/s12265-011-9303-1.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Hemshekhar, M., Thushara, R. M., Chandranayaka, S., Sherman, L. S., Kemparaju, K., & Girish, K. S. (2016). Emerging roles of hyaluronic acid bioscaffolds in tissue engineering and regenerative medicine. International Journal of Biological Macromolecules, 86, 917–928. doi:10.1016/j.ijbiomac.2016.02.032.

    Article  CAS  PubMed  Google Scholar 

  35. San Juan, A., Ducrocq, G., Hlawaty, H., Bataille, I., Guenin, E., Letourneur, D., et al. (2007a). Tubular cationized pullulan hydrogels as local reservoirs for plasmid DNA. Journal of Biomedical Materials Research Part A, 83A(3), 819–827. doi:10.1002/jbm.a.31413.

    Article  CAS  Google Scholar 

  36. San Juan, A., Hlawaty, H., Chaubet, F., Letourneur, D., & Feldman, L. J. (2007b). Cationized pullulan 3D matrices as new materials for gene transfer. Journal of Biomedical Materials Research Part A, 82A(2), 354–362. doi:10.1002/jbm.a.31062.

    Article  CAS  Google Scholar 

  37. Kapoor, D. N., Bhatia, A., Kaur, R., Sharma, R., Kaur, G., & Dhawan, S. (2015). PLGA: a unique polymer for drug delivery. Therapeutic Delivery, 6(1), 41–58. doi:10.4155/tde.14.91.

    Article  CAS  PubMed  Google Scholar 

  38. Xiao, Y., Yuan, M., Zhang, J., Yan, J., & Lang, M. (2014). Functional poly(epsilon-caprolactone) based materials: preparation, self-assembly and application in drug delivery. Current Topics in Medicinal Chemistry, 14(6), 781–818.

    Article  CAS  PubMed  Google Scholar 

  39. Ruiz-Esparza, G. U., Flores-Arredondo, J. H., Segura-Ibarra, V., Torre-Amione, G., Ferrari, M., Blanco, E., et al. (2013). The physiology of cardiovascular disease and innovative liposomal platforms for therapy. International Journal of Nanomedicine, 8, 629–640. doi:10.2147/IJN.S30599.

    PubMed  PubMed Central  Google Scholar 

  40. Jawad, H., Ali, N. N., Lyon, A. R., Chen, Q. Z., Harding, S. E., & Boccaccini, A. R. (2007). Myocardial tissue engineering: a review. Journal of Tissue Engineering and Regenerative Medicine, 1(5), 327–342. doi:10.1002/term.46.

    Article  CAS  PubMed  Google Scholar 

  41. Zhang, S., Holmes, T., Lockshin, C., & Rich, A. (1993). Spontaneous assembly of a self-complementary oligopeptide to form a stable macroscopic membrane. Proceedings of the National Academy of Sciences of the United States of America, 90(8), 3334–3338.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. French, K. M., Somasuntharam, I., & Davis, M. E. (2016). Self-assembling peptide-based delivery of therapeutics for myocardial infarction. Advanced Drug Delivery Reviews, 96, 40–53. doi:10.1016/j.addr.2015.04.023.

    Article  CAS  PubMed  Google Scholar 

  43. Hirt, M. N., Hansen, A., & Eschenhagen, T. (2014). Cardiac tissue engineering: state of the art. Circulation Research, 114(2), 354–367. doi:10.1161/CIRCRESAHA.114.300522.

    Article  CAS  PubMed  Google Scholar 

  44. Lister, Z., Rayner, K. J., & Suuronen, E. J. (2016). How biomaterials can influence various cell types in the repair and regeneration of the heart after myocardial infarction. Frontiers in Bioengineering and Biotechnology, 4, 62. doi:10.3389/fbioe.2016.00062.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Formiga, F. R., Tamayo, E., Simon-Yarza, T., Pelacho, B., Prosper, F., & Blanco-Prieto, M. J. (2012). Angiogenic therapy for cardiac repair based on protein delivery systems. Heart Failure Reviews, 17(3), 449–473. doi:10.1007/s10741-011-9285-8.

    Article  CAS  PubMed  Google Scholar 

  46. Madonna, R., Petrov, L., Teberino, M. A., Manzoli, L., Karam, J. P., Renna, F. V., et al. (2015). Transplantation of adipose tissue mesenchymal cells conjugated with VEGF-releasing microcarriers promotes repair in murine myocardial infarction. Cardiovascular Research, 108(1), 39–49. doi:10.1093/cvr/cvv197.

    Article  CAS  PubMed  Google Scholar 

  47. Zhu, J., & Marchant, R. E. (2011). Design properties of hydrogel tissue-engineering scaffolds. Expert Review of Medical Devices, 8(5), 607–626. doi:10.1586/erd.11.27.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  48. Xu, T., Jin, J., Gregory, C., Hickman, J. J., & Boland, T. (2005). Inkjet printing of viable mammalian cells. Biomaterials, 26(1), 93–99. doi:10.1016/j.biomaterials.2004.04.011.

    Article  PubMed  CAS  Google Scholar 

  49. Moon, S., Hasan, S. K., Song, Y. S., Xu, F., Keles, H. O., Manzur, F., et al. (2010). Layer by layer three-dimensional tissue epitaxy by cell-laden hydrogel droplets. Tissue Engineering. Part C, Methods, 16(1), 157–166. doi:10.1089/ten.TEC.2009.0179.

    Article  CAS  PubMed  Google Scholar 

  50. Jung, J. P., Bhuiyan, D. B., & Ogle, B. M. (2016). Solid organ fabrication: comparison of decellularization to 3D bioprinting. Biomater Res, 20(1), 27. doi:10.1186/s40824-016-0074-2.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  51. Sarig, U., Nguyen, E. B., Wang, Y., Ting, S., Bronshtein, T., Sarig, H., et al. (2015). Pushing the envelope in tissue engineering: ex vivo production of thick vascularized cardiac extracellular matrix constructs. Tissue Engineering. Part A, 21(9–10), 1507–1519. doi:10.1089/ten.TEA.2014.0477.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Matsuura, K., Masuda, S., & Shimizu, T. (2014). Cell sheet-based cardiac tissue engineering. Anat Rec (Hoboken), 297(1), 65–72. doi:10.1002/ar.22834.

    Article  CAS  Google Scholar 

  53. Shimizu, T., Yamato, M., Kikuchi, A., & Okano, T. (2003). Cell sheet engineering for myocardial tissue reconstruction. Biomaterials, 24(13), 2309–2316.

    Article  CAS  PubMed  Google Scholar 

  54. Shimizu, T., Sekine, H., Yang, J., Isoi, Y., Yamato, M., Kikuchi, A., et al. (2006). Polysurgery of cell sheet grafts overcomes diffusion limits to produce thick, vascularized myocardial tissues. The FASEB Journal, 20(6), 708–710. doi:10.1096/fj.05-4715fje.

    CAS  PubMed  Google Scholar 

  55. Memon, I. A., Sawa, Y., Fukushima, N., Matsumiya, G., Miyagawa, S., Taketani, S., et al. (2005). Repair of impaired myocardium by means of implantation of engineered autologous myoblast sheets. The Journal of Thoracic and Cardiovascular Surgery, 130(5), 1333–1341. doi:10.1016/j.jtcvs.2005.07.023.

    Article  PubMed  Google Scholar 

  56. Shudo, Y., Miyagawa, S., Nakatani, S., Fukushima, S., Sakaguchi, T., Saito, A., et al. (2013). Myocardial layer-specific effect of myoblast cell-sheet implantation evaluated by tissue strain imaging. Circulation Journal, 77(4), 1063–1072.

    Article  CAS  PubMed  Google Scholar 

  57. Sawa, Y., Miyagawa, S., Sakaguchi, T., Fujita, T., Matsuyama, A., Saito, A., et al. (2012). Tissue engineered myoblast sheets improved cardiac function sufficiently to discontinue LVAS in a patient with DCM: report of a case. Surgery Today, 42(2), 181–184. doi:10.1007/s00595-011-0106-4.

    Article  PubMed  Google Scholar 

  58. Masuda, S., & Shimizu, T. (2016). Three-dimensional cardiac tissue fabrication based on cell sheet technology. Advanced Drug Delivery Reviews, 96, 103–109. doi:10.1016/j.addr.2015.05.002.

    Article  CAS  PubMed  Google Scholar 

  59. Sakaguchi, K., Shimizu, T., Horaguchi, S., Sekine, H., Yamato, M., Umezu, M., et al. (2013). In vitro engineering of vascularized tissue surrogates. Scientific Reports, 3, 1316. doi:10.1038/srep01316.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  60. Ott, H. C., Matthiesen, T. S., Goh, S. K., Black, L. D., Kren, S. M., Netoff, T. I., et al. (2008). Perfusion-decellularized matrix: using nature’s platform to engineer a bioartificial heart. Nature Medicine, 14(2), 213–221. doi:10.1038/nm1684.

    Article  CAS  PubMed  Google Scholar 

  61. Caralt, M., Uzarski, J. S., Iacob, S., Obergfell, K. P., Berg, N., Bijonowski, B. M., et al. (2015). Optimization and critical evaluation of decellularization strategies to develop renal extracellular matrix scaffolds as biological templates for organ engineering and transplantation. American Journal of Transplantation, 15(1), 64–75. doi:10.1111/ajt.12999.

    Article  CAS  PubMed  Google Scholar 

  62. Guyette, J. P., Charest, J. M., Mills, R. W., Jank, B. J., Moser, P. T., Gilpin, S. E., et al. (2016). Bioengineering human myocardium on native extracellular matrix. Circulation Research, 118(1), 56–72. doi:10.1161/CIRCRESAHA.115.306874.

    Article  CAS  PubMed  Google Scholar 

  63. Chiesa, R., Marone, E. M., Tshomba, Y., Logaldo, D., Castellano, R., & Melissano, G. (2009). Aortobifemoral bypass grafting using expanded polytetrafluoroethylene stretch grafts in patients with occlusive atherosclerotic disease. [Article]. Annals of Vascular Surgery, 23(6), 764–769. doi:10.1016/j.avsg.2009.01.004.

    Article  PubMed  Google Scholar 

  64. van Det, R. J., Vriens, B. H. R., van der Palen, J., & Geelkerken, R. H. (2009). Dacron or ePTFE for femoro-popliteal above-knee bypass grafting: short- and long-term results of a multicentre randomised trial. [article]. European Journal of Vascular and Endovascular Surgery, 37(4), 457–463. doi:10.1016/j.ejvs.2008.11.041.

    Article  PubMed  Google Scholar 

  65. Riepe, G., Loos, J., Imig, H., Schroder, A., Schneider, E., Petermann, J., et al. (1997). Long-term in vivo alterations of polyester vascular grafts in humans. [Article]. European Journal of Vascular and Endovascular Surgery, 13(6), 540–548. doi:10.1016/s1078-5884(97)80062-7.

    Article  CAS  PubMed  Google Scholar 

  66. Jackson, M. R., Belott, T. P., Dickason, T., Kaiser, W. J., Modrall, J. G., Valentine, R. J., et al. (2000). The consequences of a failed femoropopliteal bypass grafting: Comparison of saphenous vein and PTFE grafts. [Article; Proceedings Paper]. Journal of Vascular Surgery, 32(3), 498–504. doi:10.1067/mva.2000.108634.

    Article  CAS  PubMed  Google Scholar 

  67. Chaouat, M., Le Visage, C., Baille, W. E., Escoubet, B., Chaubet, F., Mateescu, M. A., et al. (2008). A novel cross-linked poly(vinyl alcohol) (PVA) for vascular grafts. [Article]. Advanced Functional Materials, 18(19), 2855–2861. doi:10.1002/adfm.200701261.

    Article  CAS  Google Scholar 

  68. Chaouat, M., Le Visage, C., Autissier, A., Chaubet, F., & Letourneur, D. (2006). The evaluation of a small-diameter polysaccharide-based arterial graft in rats. [article]. Biomaterials, 27(32), 5546–5553. doi:10.1016/j.biomaterials.2006.06.032.

    Article  CAS  PubMed  Google Scholar 

  69. Ino, J. M., Chevallier, P., Letourneur, D., Mantovani, D., & Le Visage, C. (2013a). Plasma functionalization of poly(vinyl alcohol) hydrogel for cell adhesion enhancement. Biomatter, 3.

  70. Ino, J. M., Sju, E., Ollivier, V., Yim, E. K. F., Letourneur, D., & Le Visage, C. (2013b). Evaluation of hemocompatibility and endothelialization of hybrid poly(vinyl alcohol) (PVA)/gelatin polymer films. [Article]. Journal of Biomedical Materials Research Part B-Applied Biomaterials, 101(8), 1549–1559. doi:10.1002/jbm.b.32977.

    Article  CAS  Google Scholar 

  71. Pang, J. H., Farhatnia, Y., Godarzi, F., Tan, A., Rajadas, J., Cousins, B. G., et al. (2015). In situ endothelialization: Bioengineering considerations to translation. [Review]. Small, 11(47), 6248–6264. doi:10.1002/smll.201402579.

    Article  CAS  PubMed  Google Scholar 

  72. Chung, T. W., Liu, D. Z., Wang, S. Y., & Wang, S. S. (2003). Enhancement of the growth of human endothelial cells by surface roughness at nanometer scale. [Article]. Biomaterials, 24(25), 4655–4661. doi:10.1016/s0142-9612(03)00361-1.

    Article  CAS  PubMed  Google Scholar 

  73. Simon, C., Palmaz, J. C., & Sprague, E. A. (2000). Influence of topography on endothelialization of stents: clues for new designs. [Article]. Journal of Long-Term Effects of Medical Implants, 10(1–2), 143–151.

    CAS  PubMed  Google Scholar 

  74. Serrano, M. C., Pagani, R., Ameer, G. A., Vallet-Regi, M., & Portoles, M. T. (2008). Endothelial cells derived from circulating progenitors as an effective source to functional endothelialization of NaOH-treated poly(epsilon-caprolactone) films. [Article]. Journal of Biomedical Materials Research Part A, 87A(4), 964–971. doi:10.1002/jbm.a.31728.

    Article  CAS  Google Scholar 

  75. Amaral, I. F., Unger, R. E., Fuchs, S., Mendonca, A. M., Sousa, S. R., Barbosa, M. A., et al. (2009). Fibronectin-mediated endothelialisation of chitosan porous matrices. [Article]. Biomaterials, 30(29), 5465–5475. doi:10.1016/j.biomaterials.2009.06.056.

    Article  CAS  PubMed  Google Scholar 

  76. Montano-Machado, V., Hugoni, L., Diaz-Rodriguez, S., Tolouei, R., Chevallier, P., Pauthe, E., et al. (2016). A comparison of adsorbed and grafted fibronectin coatings under static and dynamic conditions. [Article]. Physical Chemistry Chemical Physics, 18(35), 24704–24712. doi:10.1039/c6cp04527h.

    Article  CAS  PubMed  Google Scholar 

  77. Xiong, G. M., Yuan, S. J., Tan, C. K., Wang, J. K., Liu, Y., Tan, T. T. Y., et al. (2014). Endothelial cell thrombogenicity is reduced by ATRP-mediated grafting of gelatin onto PCL surfaces. [Article]. Journal of Materials Chemistry B, 2(5), 485–493. doi:10.1039/c3tb20760a.

    Article  CAS  Google Scholar 

  78. Oh, J. H., Lee, J. S., Park, K. M., Moon, H. T., & Park, K. D. (2012). Tyrosinase-mediated surface grafting of cell adhesion peptide onto micro-fibrous polyurethane for improved endothelialization. [Article]. Macromolecular Research, 20(11), 1150–1155. doi:10.1007/s13233-012-0161-8.

    Article  CAS  Google Scholar 

  79. Shen, W. X., Cai, K. Y., Yang, Z. X., Yan, Y., Yang, W. H., & Liu, P. (2012). Improved endothelialization of NiTi alloy by VEGF functionalized nanocoating. [Article]. Colloids and Surfaces B-Biointerfaces, 94, 347–353. doi:10.1016/j.colsurfb.2012.02.009.

    Article  CAS  Google Scholar 

  80. Gabbieri, D., Dohmen, P. M., Koch, C., Lembcke, A., Rutsch, W., & Konertz, W. (2007). Aortocoronary endothelial cell-seeded polytetrafluoroethylene graft: 9-year patency. [Editorial Material]. Annals of Thoracic Surgery, 83(3), 1166–1168. doi:10.1016/j.athoracsur.2006.09.016.

    Article  PubMed  Google Scholar 

  81. McAllister, T. N., Maruszewski, M., Garrido, S. A., Wystrychowski, W., Dusserre, N., Marini, A., et al. (2009). Effectiveness of haemodialysis access with an autologous tissue-engineered vascular graft: a multicentre cohort study. [Article]. Lancet, 373(9673), 1440–1446.

    Article  PubMed  Google Scholar 

  82. Zhang, Z., Wang, Z. X., Liu, S. Q., & Kodama, M. (2004). Pore size, tissue ingrowth, and endothelialization of small-diameter microporous polyurethane vascular prostheses. [Article]. Biomaterials, 25(1), 177–187. doi:10.1016/s0142-9612(03)00478-2.

    Article  PubMed  CAS  Google Scholar 

  83. Sieminski, A. L., & Gooch, K. J. (2000). Biomaterial-microvasculature interactions. [Article]. Biomaterials, 21(22), 2233–2241. doi:10.1016/s0142-9612(00)00149-6.

    Article  CAS  Google Scholar 

  84. Mantovani, D., Vermette, P., Fiset, M., Guidoin, R., & Laroche, G. (2000). Modeling lipid uptake in expanded polytetrafluoroethylene vascular prostheses and its effects on mechanical properties. [Article]. Artificial Organs, 24(5), 334–345. doi:10.1046/j.1525-1594.2000.06485.x.

    Article  CAS  PubMed  Google Scholar 

  85. Nagai, N., Nakayama, Y., Nishi, S., & Munekata, M. (2009). Development of novel covered stents using salmon collagen. [Article]. Journal of Artificial Organs, 12(1), 61–66. doi:10.1007/s10047-008-0446-z.

    Article  CAS  PubMed  Google Scholar 

  86. De Visscher, G., Mesure, L., Meuris, B., Ivanova, A., & Flameng, W. (2012). Improved endothelialization and reduced thrombosis by coating a synthetic vascular graft with fibronectin and stem cell homing factor SDF-1 alpha. [Article]. Acta Biomaterialia, 8(3), 1330–1338. doi:10.1016/j.actbio.2011.09.016.

    Article  CAS  PubMed  Google Scholar 

  87. Shindo, S., Motohashi, S., Katsu, M., Kaga, S., Inoue, H., & Matsumoto, M. (2008). Coated prostheses are associated with prolonged inflammation in aortic surgery: a cost analysis. [Article]. Artificial Organs, 32(3), 183–187. doi:10.1111/j.1525-1594.2007.00521.x.

    Article  CAS  PubMed  Google Scholar 

  88. Zheng, W. T., Wang, Z. H., Song, L. J., Zhao, Q., Zhang, J., Li, D., et al. (2012). Endothelialization and patency of RGD-functionalized vascular grafts in a rabbit carotid artery model. [Article]. Biomaterials, 33(10), 2880–2891. doi:10.1016/j.biomaterials.2011.12.047.

    Article  CAS  PubMed  Google Scholar 

  89. Devine, C., McCollum, C., & Particip, N. W. F.-P. T. (2004). Heparin-bonded Dacron or polytetrafluorethylene for femoropopliteal bypass: five-year results of a prospective randomized multicenter clinical trial. [Article; Proceedings Paper]. Journal of Vascular Surgery, 40(5), 924–931. doi:10.1016/j.jvs.2004.08.033.

    Article  PubMed  Google Scholar 

  90. Kapfer, X., Meichelboeck, W., & Groegler, F. M. (2006). Comparison of carbon-impregnated and standard ePTFE prostheses in extra-anatomical anterior tibial artery bypass: a prospective randomized multicenter study. [Article]. European Journal of Vascular and Endovascular Surgery, 32(2), 155–168. doi:10.1016/j.ejvs.2005.12.015.

    Article  CAS  PubMed  Google Scholar 

  91. de Mel, A., Murad, F., & Seifalian, A. M. (2011). Nitric oxide: a guardian for vascular grafts? [Review]. Chemical Reviews, 111(9), 5742–5767. doi:10.1021/cr200008n.

    Article  PubMed  CAS  Google Scholar 

  92. Goel, H. L., & Mercurio, A. M. (2013). VEGF targets the tumour cell. [Review]. Nature Reviews Cancer, 13(12), 871–882. doi:10.1038/nrc3627.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Wise, S. G., Liu, H. J., Kondyurin, A., Byrom, M. J., Bannon, P. G., Edwards, G. A., et al. (2016). Plasma ion activated expanded polytetrafluoroethylene vascular grafts with a covalently immobilized recombinant human tropoelastin coating reducing neointimal hyperplasia. [Article]. ACS Biomaterials Science & Engineering, 2(8), 1286–1297. doi:10.1021/acsbiomaterials.6b00208.

    Article  CAS  Google Scholar 

  94. Sethi, R., & Lee, C. H. (2012). Endothelial progenitor cell capture stent: safety and effectiveness. [Article]. Journal of Interventional Cardiology, 25(5), 493–500. doi:10.1111/j.1540-8183.2012.00740.x.

    Article  PubMed  Google Scholar 

  95. Wei, Y., Ji, Y., Xiao, L. L., Lin, Q. K., Xu, J. P., Ren, K. F., et al. (2013). Surface engineering of cardiovascular stent with endothelial cell selectivity for in vivo re-endothelialisation. [Article]. Biomaterials, 34(11), 2588–2599. doi:10.1016/j.biomaterials.2012.12.036.

    Article  CAS  PubMed  Google Scholar 

  96. Deng, J. C., Yuan, S. H., Wang, J., Luo, R. F., Chen, S., & Huang, N. (2016). Fabrication of endothelial progenitor cell capture surface via DNA aptamer modifying dopamine/polyethyleneimine copolymer film. [Article]. Applied Surface Science, 386, 138–150. doi:10.1016/j.apsusc.2016.06.015.

    Article  CAS  Google Scholar 

  97. Mahara, A., Somekawa, S., Kobayashi, N., Hirano, Y., Kimura, Y., Fujisato, T., et al. (2015). Tissue-engineered acellular small diameter long-bypass grafts with neointima-inducing activity. [Article]. Biomaterials, 58, 54–62. doi:10.1016/j.biomaterials.2015.04.031.

    Article  CAS  PubMed  Google Scholar 

  98. Fu, G. W., Yu, Z. J., Chen, Y. Q., Chen, Y. D., Tian, F., & Yang, X. D. (2016). Direct adsorption of anti-CD34 antibodies on the nano-porous stent surface to enhance endothelialization. [Article]. Acta Cardiologica Sinica, 32(3), 273–280. doi:10.6515/acs20150813a.

    PubMed  PubMed Central  Google Scholar 

  99. Choi, W. S., Joung, Y. K., Lee, Y., Bae, J. W., Park, H. K., Park, Y. H., et al. (2016). Enhanced patency and endothelialization of small-caliber vascular grafts fabricated by coimmobilization of heparin and cell-adhesive peptides. [Article]. ACS Applied Materials & Interfaces, 8(7), 4336–4346. doi:10.1021/acsami.5b12052.

    Article  CAS  Google Scholar 

  100. Simsekyilmaz, S., Liehn, E. A., Weinandy, S., Schreiber, F., Megens, R. T. A., Theelen, W., et al. (2016). Targeting in-stent-stenosis with RGD- and CXCL1-coated mini-stents in mice. [Article]. Plos One, 11(5), doi:10.1371/journal.pone.0155829.

  101. Tang, H. F., Wang, Q., Wang, X. B., Zhou, J. P., Zhu, M. J., Qiao, T., et al. (2016). Effect of a novel stent on re-endothelialization, platelet adhesion, and neointimal formation. [Article]. Journal of Atherosclerosis and Thrombosis, 23(1), 67–80.

    Article  CAS  PubMed  Google Scholar 

  102. Vosen, S., Rieck, S., Heidsieck, A., Mykhaylyk, O., Zimmermann, K., Bloch, W., et al. (2016). Vascular repair by circumferential cell therapy using magnetic nanoparticles and tailored magnets. [Article]. ACS Nano, 10(1), 369–376. doi:10.1021/acsnano.5b04996.

    Article  CAS  PubMed  Google Scholar 

  103. Lawson, J. H., Glickman, M. H., Ilzecki, M., Jakimowicz, T., Jaroszynski, A., Peden, E. K., et al. (2016). Bioengineered human acellular vessels for dialysis access in patients with end-stage renal disease: two phase 2 single-arm trials. [Article]. Lancet, 387(10032), 2026–2034.

    Article  PubMed  PubMed Central  Google Scholar 

  104. Ballarin, F. M., Caracciolo, P. C., Blotta, E., Ballarin, V. L., & Abraham, G. A. (2014). Optimization of poly(L-lactic acid)/segmented polyurethane electrospinning process for the production of bilayered small-diameter nanofibrous tubular structures. [Article]. Materials Science & Engineering C-Materials for Biological Applications, 42, 489–499. doi:10.1016/j.msec.2014.05.074.

    Article  CAS  Google Scholar 

  105. Bagnasco, D. S., Ballarin, F. M., Cymberknop, L. J., Balay, G., Negreira, C., Abraham, G. A., et al. (2014). Elasticity assessment of electrospun nanofibrous vascular grafts: a comparison with femoral ovine arteries. [Article]. Materials Science & Engineering C-Materials for Biological Applications, 45, 446–454. doi:10.1016/j.msec.2014.09.016.

    Article  CAS  Google Scholar 

  106. Xu, H., Nguyen, K. T., Brilakis, E. S., Yang, J., Fuh, E., & Banerjee, S. (2012). Enhanced endothelialization of a new stent polymer through surface enhancement and incorporation of growth factor-delivering microparticles. [Article]. Journal of Cardiovascular Translational Research, 5(4), 519–527. doi:10.1007/s12265-012-9381-8.

    Article  PubMed  Google Scholar 

  107. Fukunishi, T., Best, C. A., Sugiura, T., Shoji, T., Yi, T., Udelsman, B., et al. (2016). Tissue-engineered small diameter arterial vascular grafts from cell-free nanofiber PCL/chitosan scaffolds in a sheep model. [Article]. Plos One, 11(7), doi:10.1371/journal.pone.0158555.

  108. Peck, M., Dusserre, N., McAllister, T. N., & L’Heureux, N. (2011). Tissue engineering by self-assembly. [Article]. Materials Today, 14(5), 218–224.

    Article  CAS  Google Scholar 

  109. Wystrychowski, W., McAllister, T. N., Zagalski, K., Dusserre, N., Cierpka, L., & L’Heureux, N. (2014). First human use of an allogeneic tissue-engineered vascular graft for hemodialysis access. [Article]. Journal of Vascular Surgery, 60(5), 1353–1357. doi:10.1016/j.jvs.2013.08.018.

    Article  PubMed  Google Scholar 

  110. Fayol, D., Le Visage, C., Ino, J., Gazeau, F., Letourneur, D., & Wilhelm, C. (2013). Design of biomimetic vascular grafts with magnetic endothelial patterning. Cell Transplantation, 22, 2105–2118.

    Article  PubMed  Google Scholar 

  111. Loy, C., Kizhakkedathu, J. N., & Mantovani, D. (2015). Tri-culture of vascular cells from cellularised collagen-based tubular scaffolds for vascular tissue engineering. [Meeting Abstract]. Tissue Engineering Part A, 21, S100–S100.

    Google Scholar 

  112. Lee, B., Shafiq, M., Jung, Y., Park, J. C., & Kim, S. (2016). Characterization and preparation of bio-tubular scaffolds for fabricating artificial vascular grafts by combining electrospinning and a co-culture system. [Article]. Macromolecular Research, 24(2), 131–142. doi:10.1007/s13233-016-4017-5.

    Article  CAS  Google Scholar 

  113. Lee, S. J., Heo, D. N., Park, J. S., Kwon, S. K., Lee, J. H., Kim, W. D., et al. (2015). Characterization and preparation of bio-tubular scaffolds for fabricating artificial vascular grafts by combining electrospinning and a 3D printing system. [Article]. Physical Chemistry Chemical Physics, 17(5), 2996–2999. doi:10.1039/c4cp04801f.

    Article  CAS  PubMed  Google Scholar 

  114. Pinnock, C. B., Meier, E. M., Joshi, N. N., Wu, B., & Lam, M. T. (2016). Customizable engineered blood vessels using 3D printed inserts. [Article]. Methods, 99, 20–27. doi:10.1016/j.ymeth.2015.12.015.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Didier Letourneur.

Ethics declarations

Funding

No funding.

Conflict of Interest

The authors declare that they have no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human participants and animals performed by any of the authors.

Additional information

Associate Editor Adrian Chester oversaw the review of this article.

Teresa Simon-Yarza and Isabelle Bataille have equivalent contribution.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Simon-Yarza, T., Bataille, I. & Letourneur, D. Cardiovascular Bio-Engineering: Current State of the Art. J. of Cardiovasc. Trans. Res. 10, 180–193 (2017). https://doi.org/10.1007/s12265-017-9740-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12265-017-9740-6

Keywords

Navigation