Skip to main content

Advertisement

Log in

Vitamin D Protects Human Endothelial Cells from H2O2 Oxidant Injury Through the Mek/Erk-Sirt1 Axis Activation

  • Published:
Journal of Cardiovascular Translational Research Aims and scope Submit manuscript

Abstract

Endothelium homeostasis alterations govern the pathogenesis of cardiovascular diseases. Several studies show that vitamins anti-oxidant proprieties rescue the endothelial functions adversely affected by oxidative stress in several diseases. We investigated the vitamin D anti-oxidant potential in human endothelial cells exposed to H2O2 oxidative stress. Vitamin D protected endothelial cells against H2O2 oxidative stress counteracting the superoxide anion generation, the apoptosis and blocking the extrinsic caspase cascade by positively controlling phospho-active ERKs level. MEKs/ERKs inhibitor U0126 reverted the vitamin D anti-oxidant effects. Characterizing the vitamin D downstream effector, we found that vitamin D up-regulated SirT-1 and reverted the SirT-1 down-regulation induced by H2O2. ERKs activation by vitamin D strictly correlated with SirT-1 protein accumulation since both MEKs/ERKs inhibition and ERK1/2 silencing decreased SIRT-1. SirT-1 inhibition by Sirtinol reverted the vitamin D anti-oxidant effects. Thus, vitamin D significantly reduced the endothelial malfunction and damage caused by oxidative stress, through the activation of MEKs/ERKs/SirT-1 axis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Johnson, F. B., Sinclair, D. A., & Guarente, L. (1999). Molecular biology of aging. Cell, 96, 291–302.

    Article  PubMed  CAS  Google Scholar 

  2. Lee, R., Channon, K. M., & Antoniades, C. (2012). Therapeutic strategies targeting endothelial function in humans: clinical implications. Current Vascular Pharmacology, 10(1), 77–93.

    Article  PubMed  CAS  Google Scholar 

  3. Fuchs-Tarlovsky V. (2012) Role of antioxidants in cancer therapy. Nutrition, 29, 15–21.

    Google Scholar 

  4. Wang, J. C., & Bennett, M. (2012). Aging and atherosclerosis: mechanisms, functional consequences, and potential therapeutics for cellular senescence. Circulation Research, 111, 245–259.

    Article  PubMed  CAS  Google Scholar 

  5. Halliwell, B. (2012). Free radicals and antioxidants: updating a personal view. Nutrition Reviews, 2012(70), 257–265.

    Article  Google Scholar 

  6. Chen, A. F., Chen, D. D., Daiber, A., Faraci, F. M., Li, H., Rembold, C. M., & Laher, I. (2012). Free radical biology of the cardiovascular system. Clinical Science (London, England), 123, 73–91.

    Article  CAS  Google Scholar 

  7. Kushi, L. H., Folsom, A. R., Prineas, R. J., Mink, P. J., Wu, Y., & Bostick, R. M. (1996). Dietary antioxidant vitamins and death from coronary heart disease in postmenopausal women. The New England Journal of Medicine, 334, 1156–1162.

    Article  PubMed  CAS  Google Scholar 

  8. Rimm, E. B., Stampfer, M. J., Ascherio, A., Giovannucci, E., Colditz, G. A., & Willett, W. C. (1993). Vitamin E consumption and the risk of coronary heart disease in men. The New England Journal of Medicine, 328, 1450–1456.

    Article  PubMed  CAS  Google Scholar 

  9. Holick, M. F. (2003). Vitamin D: a millenium perspective. Journal of Cellular Biochemistry, 88, 296–307.

    Article  PubMed  CAS  Google Scholar 

  10. Somjen, D., Weisman, Y., Kohen, F., Gayer, B., Limor, R., Sharon, O., Jaccard, N., Knoll, E., & Stern, N. (2005). 25-Hydroxyvitamin D3-1α-hydroxylase is expressed in human vascular smooth muscle cells and is upregulated by parathyroid hormone and estrogenic compounds. Circulation, 111, 1666–1671.

    Article  PubMed  CAS  Google Scholar 

  11. Lieben, L., Carmeliet, G., & Masuyama, R. (2011). Calcemic actions of vitamin D: effects on the intestine, kidney and bone. Best Practice & Research. Clinical Endocrinology & Metabolism, 25, 561–572.

    Article  CAS  Google Scholar 

  12. Holick, M. F. (2007). Vitamin D deficiency. The New England Journal of Medicine, 357, 266–281.

    Article  PubMed  CAS  Google Scholar 

  13. Lind, L., Hanni, A., Lithell, H., Hvarfner, A., Sorensen, O. H., & Ljunghall, S. (1995). Vitamin D is related to blood pressure and other cardiovascular risk factors in middle-aged men. American Journal of Hypertension, 8, 894–901.

    Article  PubMed  CAS  Google Scholar 

  14. Xiang, W., Kong, J., Chen, S., Cao, L. P., Qiao, G., Zheng, W., Liu, W., Li, X., Gardner, D. G., & Li, Y. C. (2005). Cardiac hypertrophy in vitamin D receptor knockout mice: role of the systemic and cardiac renin–angiotensin systems. American Journal of Physiology. Endocrinology and Metabolism, 288, E125–E132.

    Article  PubMed  CAS  Google Scholar 

  15. Watson, K. E., Abrolat, M. L., Malone, L. L., Hoeg, J. M., Doherty, T., Detrano, R., & Demer, L. L. (1997). Active 16 serum vitamin D levels are inversely correlated with coronary calcification. Circulation, 96, 1755–1760.

    Article  PubMed  CAS  Google Scholar 

  16. Scragg, R., Jackson, R., Holdaway, I. M., Lim, T., & Beaglehole, R. (1990). Myocardial infarction is inversely associated with plasma 25-hydroxyvitamin D3 levels: a community-based study. International Journal of Epidemiology, 19, 559–563.

    Article  PubMed  CAS  Google Scholar 

  17. Poole, K. E., Loveridge, N., Barker, P. J., Halsall, D. J., Rose, C., Reeve, J., & Warburton, E. A. (2006). Reduced vitamin D in acute stroke. Stroke, 37, 243–245.

    Article  PubMed  CAS  Google Scholar 

  18. Zehnder, D., Bland, R., Chana, R. S., Wheeler, D. C., Howie, A. J., Williams, M. C., Stewart, P. M., & Hewison, M. (2002). Synthesis of 1,25-dihydroxyvitamin D3 by human endothelial cells is regulated by inflammatory cytokines: a novel autocrine determinant of vascular cell adhesion. JASN, 13, 621–629.

    PubMed  CAS  Google Scholar 

  19. Bar-Sagi, D., & Hall, A. (2000). Ras, and Rho GTPases: a family reunion. Cell, 103, 227–238.

    Article  PubMed  CAS  Google Scholar 

  20. Lander, H. M., Milbank, A. J., Tauras, J. M., Hajjar, D. P., Hempstead, B. L., Schwartz, G. D., Kraemer, R. T., Mirza, U. A., Chait, B. T., Burk, S. C., & Quilliam, L. A. (1996). Redox regulation of cell signalling. Nature, 381, 380–381.

    Article  PubMed  CAS  Google Scholar 

  21. Maekawa, Y., Ohishi, M., Ikushima, M., Yamamoto, K., Yasuda, O., Oguro, R., Yamamoto-Hanasaki, H., Tatara, Y., Takeya, Y., & Rakugi, H. (2011). Klotho protein diminishes endothelial apoptosis and senescence via a mitogen-activated kinase pathway. Geriatrics and Gerontology International, 2011(11), 510–516.

    Article  Google Scholar 

  22. Joshi, M. B., Philippova, M., Ivanov, D., Allenspach, R., Erne, P., & Resink, T. J. (2005). T-cadherin protects endothelial cells from oxidative stress-induced apoptosis. The FASEB Journal, 19, 1737–1739.

    CAS  Google Scholar 

  23. Midwinter, R. G., Vissers, M. C., & Winterbourn, C. C. (2001). Hypochlorous acid stimulation of the mitogen-activated protein kinase pathway enhances cell survival. Archives of Biochemistry and Biophysics, 394(1), 13–20.

    Article  PubMed  CAS  Google Scholar 

  24. van Gorp, R. M., Heeneman, S., Broers, J. L., Bronnenberg, N. M., van Dam-Mieras, M. C., & Heemskerk, J. W. (1999). Glutathione oxidation in calcium- and p38 MAPK-dependent membrane blebbing of endothelial cells. Biochimica et Biophysica Acta, 19, 129–138.

    Google Scholar 

  25. Bouloumie, A., Marumo, T., Lafontan, M., & Busse, R. (1999). Leptin induces oxidative stress in human endothelial cells. The FASEB Journal, 13, 1231–1238.

    CAS  Google Scholar 

  26. Runchel, C., Matsuzawa, A., & Ichijo, H. (2011). Mitogen-activated protein kinases in mammalian oxidative stress responses. Antioxidants & Redox Signaling, 15, 205–218.

    Article  CAS  Google Scholar 

  27. Passariello, C. L., Zini, M., Nassi, P. A., Pignatti, C., & Stefanelli, C. (2011). Upregulation of SIRT1 deacetylase in phenylephrine-treated cardiomyoblasts. Biochemical and Biophysical Research Communications, 407, 512–516.

    Article  PubMed  CAS  Google Scholar 

  28. Satoh, A., Stein, L., & Imai, S. (2011). The role of mammalian sirtuins in the regulation of metabolism, aging, and longevity. Handbook of Experimental Pharmacology, 206, 125–162.

    Article  PubMed  CAS  Google Scholar 

  29. Potente, M., & Dimmeler, S. (2008). Emerging roles of SIRT1 in vascular endothelial homeostasis. Cell Cycle, 7, 2117–2122.

    Article  PubMed  CAS  Google Scholar 

  30. Kao, C. L., Chen, L. K., Chang, Y. L., Yung, M. C., Hsu, C. C., Chen, Y. C., Lo, W. L., Chen, S. J., Ku, H. H., & Hwang, S. J. (2010). Resveratrol protects human endothelium from H(2)O(2)-induced oxidative stress and senescence via SirT1 activation. Journal of Atherosclerosis and Thrombosis, 17, 970–979.

    Article  PubMed  CAS  Google Scholar 

  31. Ota, H., Akishita, M., Eto, M., Iijima, K., Kaneki, M., & Ouchi, Y. (2007). Sirt1 modulates premature senescence-like phenotype in human endothelial cells. Journal of Molecular and Cellular Cardiology, 43, 571–579.

    Article  PubMed  CAS  Google Scholar 

  32. Wang F, Chen HZ, Lv X, Liu DP. (2012) SIRT1 as a novel potential treatment target for vascular aging and age-related vascular diseases. Curr Mol Med, in press.

  33. Garlanda, C., & Dejana, E. (1997). Heterogeneity of endothelial cells. Specific markers. Arteriosclerosis, Thrombosis, and Vascular Biology, 17, 1193–1202.

    Article  PubMed  CAS  Google Scholar 

  34. Levine, M. J., & Teegarden, D. (2004). 1alpha,25-dihydroxycholecalciferol increases the expression of vascular endothelial growth factor in C3H10T1/2 mouse embryo fibroblasts. The Journal of Nutrition, 134(9), 2244–2250.

    PubMed  CAS  Google Scholar 

  35. Hafizah, A. H., Zaiton, Z., Zulkhairi, A., Ilham, A. M., Mohd, M., Anita, N. N., & Zaleha, A. M. (2010). Piper sarmentosum as an antioxidant on oxidative stress in human umbilical vein endothelial cells induced by hydrogen peroxide. Journal of Zhejiang University. Science. B, 11(5), 357–365.

    Article  PubMed  CAS  Google Scholar 

  36. Choi, Y.-J., Kang, J.-S., Park, J. H. Y., Lee, Y.-J., Choi, J.-S., & Kang, Y.-H. (2003). Polyphenolic flavonoids differ in their antiapoptotic efficacy in hydrogen peroxide–treated human vascular endothelial cells. The Journal of Nutrition, 133, 985–991.

    PubMed  CAS  Google Scholar 

  37. Denizot, F., & Lang, R. (1986). Rapid colorimetric assay for cell growth and survival. Modification to the tetrazolium dye procedure giving improved sensitivity and reliability. Journal of Immunological Methods, 89, 271–277.

    Article  PubMed  CAS  Google Scholar 

  38. Ciccarelli, C., Marampon, F., Scoglio, A., Mauro, A., Giacinti, C., De Cesaris, P., & Zani, B. M. (2005). p21WAF1 expression induced by MEK/ERK pathway activation or inhibition correlates with growth arrest, myogenic differentiation and onco-phenotype reversal in rhabdomyosarcoma cells. Molecular Cancer, 13(4), 41.

    Article  Google Scholar 

  39. Lowry, O. H., Rosebrough, N. J., Farr, A. L., & Randall, R. J. (1951). Protein measurement with the Folin phenol reagent. The Journal of Biological Chemistry, 193, 265–275.

    PubMed  CAS  Google Scholar 

  40. Marampon, F., Gravina, G. L., Di Rocco, A., Bonfili, P., Di Staso, M., Fardella, C., Polidoro, L., Ciccarelli, C., Festuccia, C., Popov, V. M., Pestell, R. G., Tombolini, V., & Zani, B. M. (2011). MEK/ERK inhibitor U0126 increases the radiosensitivity of rhabdomyosarcoma cells in vitro and in vivo by downregulating growth and DNA repair signals. Molecular Cancer Therapeutics, 10, 159–168.

    Article  PubMed  CAS  Google Scholar 

  41. Portt, L., Norman, G., Clapp, C., Greenwood, M., & Greenwood, M. T. (2011). Anti-apoptosis and cell survival: a review. Biochimica et Biophysica Acta, 1813, 238–259.

    Article  PubMed  CAS  Google Scholar 

  42. Marampon, F., Ciccarelli, C., & Zani, B. M. (2006). Down-regulation of c-Myc following MEK/ERK inhibition halts the expression of malignant phenotype in rhabdomyosarcoma and in non muscle-derived human tumors. Molecular Cancer, 9(5), 31.

    Article  Google Scholar 

  43. Marampon, F., Bossi, G., Ciccarelli, C., Di Rocco, A., Sacchi, A., Pestell, R. G., & Zani, B. M. (2009). MEK/ERK inhibitor U0126 affects in vitro and in vivo growth of embryonal rhabdomyosarcoma. Molecular Cancer Therapeutics, 8(3), 543–551.

    Article  PubMed  CAS  Google Scholar 

  44. Narayanan, R., Sepulveda, V. A., Falzon, M., & Weigel, N. L. (2004). The functional consequences of cross-talk between the vitamin D receptor and ERK signaling pathways are cell-specific. The Journal of Biological Chemistry, 279(45), 47298–47310.

    Article  PubMed  CAS  Google Scholar 

  45. Rahman, S., & Mammalian, R. I. (2011). SIRT1: insights on its biological functions. Cell Communication and Signaling, 9, 11.

    Article  PubMed  CAS  Google Scholar 

  46. Brunet, A., Sweeney, L. B., Sturgill, J. F., Chua, K. F., Greer, P. L., Lin, Y., Tran, H., Ross, S. E., Mostoslavsky, R., Cohen, H. Y., Hu, L. S., Cheng, H. L., Jedrychowski, M. P., Gygi, S. P., Sinclair, D. A., Alt, F. W., & Greenberg, M. E. (2004). Stress dependent regulation of FOXO transcription factors by the SIRT1 deacetylase. Science, 303, 2011–2015.

    Article  PubMed  CAS  Google Scholar 

  47. Motta, M. C., Divecha, N., Lemieux, M., Kamel, C., Chen, D., Gu, W., Bultsma, Y., McBurney, M., & Guarente, L. (2004). Mammalian SIRT1 represses forkhead transcription factors. Cell, 116, 551–556.

    Article  PubMed  CAS  Google Scholar 

  48. An, B. S., Tavera-Mendoza, L. E., Dimitrov, V., Wang, X., Calderon, M. R., Wang, H. J., & White, J. H. (2010). Stimulation of Sirt1-regulated FoxO protein function by the ligand-bound vitamin D receptor. Molecular and Cellular Biology, 30(20), 4890–4900.

    Article  PubMed  CAS  Google Scholar 

  49. Zhao, Y., Luo, P., Li, Q. G. S., Zhang, L., Zhao, M., Xu, H., Yang, Y., & Fei, W. P. Z. (2012). Interactions between SIRT1 and MAPK/ERK regulate neuronal apoptosis induced by traumatic brain injury in vitro and in vivo. Experimental Neurology, 237, 489–498.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lorella Polidoro.

Additional information

L. Polidoro and G. Properzi contributed equally to this work.

Clinical Relevance of the Manuscript

Oxidative stress is believed to play a crucial role in the initiation and progression of several cardiovascular diseases. The vascular endothelium, which regulates the passage of macromolecules and circulating cells from blood to tissues, is a major target of oxidant stress, playing a critical role in the pathophysiology of several vascular disorders. Use of antioxidants in most clinical trials demonstrated that this treatment prevents and retards the progression of many diseases. Supplemental vitamin D significantly reduces all-cause mortality. Many evidences suggested that vitamin D play an essential role in the endothelium homeostasis and its deficiency contributes to cardiovascular diseases. Knowledge of the molecular mechanisms by which antioxidants act would be useful to both the understanding of the oxidative stress pathways that bring to the endothelial dysfunction and to the identification of possible new therapeutic strategies. The mechanisms by which vitamin D acts are largely unknown. We investigated the antioxidant potential of vitamin D using the human umbilical vein endothelial cell (HUVEC), an important model of the human endothelium that is widely used in in vitro vascular research. For the first time we show that Vitamin D counteracts the oxidative stress through the activation of MEKs/ERKs/Sirt-1 molecular axis. Increasing scientific evidences point attention on the cardio-protective effects of resveratrol, an activator of SIRT-1. Thus, our data on the role of MEKs/ERKs/Sirt-1 axis in endothelial malfunctions stresses the relevance of developing combined therapies to sustain ERK and SIRT activation in a “Signal Transduction-Based” manner for pre- and clinical studies.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Polidoro, L., Properzi, G., Marampon, F. et al. Vitamin D Protects Human Endothelial Cells from H2O2 Oxidant Injury Through the Mek/Erk-Sirt1 Axis Activation. J. of Cardiovasc. Trans. Res. 6, 221–231 (2013). https://doi.org/10.1007/s12265-012-9436-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12265-012-9436-x

Keywords

Navigation