Skip to main content
Log in

TREM2 promotes cholesterol uptake and foam cell formation in atherosclerosis

  • Original Article
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

Disordered lipid accumulation in the arterial wall is a hallmark of atherosclerosis. Previous studies found that the expression of triggering receptor expressed on myeloid cells 2 (TREM2), a transmembrane receptor of the immunoglobulin family, is increased in mouse atherosclerotic aortic plaques. However, it remains unknown whether TREM2 plays a role in atherosclerosis. Here we investigated the role of TREM2 in atherosclerosis using ApoE knockout (ApoE−/−) mouse models, primary vascular smooth muscle cells (SMCs), and bone marrow-derived macrophages (BMDMs). In ApoE−/− mice, the density of TREM2-positive foam cells in aortic plaques increased in a time-dependent manner after the mice were fed a high-fat diet (HFD). Compared with ApoE−/− mice, the Trem2−/−/ApoE−/− double-knockout mice showed significantly reduced atherosclerotic lesion size, foam cell number, and lipid burden degree in plaques after HFD feeding. Overexpression of TREM2 in cultured vascular SMCs and macrophages exacerbates lipid influx and foam cell formation by upregulating the expression of the scavenger receptor CD36. Mechanistically, TREM2 inhibits the phosphorylation of p38 mitogen-activated protein kinase and peroxisome proliferator activated-receptor gamma (PPARγ), thereby increasing PPARγ nuclear transcriptional activity and subsequently promoting the transcription of CD36. Our results indicate that TREM2 exacerbates atherosclerosis development by promoting SMC- and macrophage-derived foam cell formation by regulating scavenger receptor CD36 expression. Thus, TREM2 may act as a novel therapeutic target for the treatment of atherosclerosis.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

All the data supporting the findings of this study are available within the paper. Data will be made available on reasonable request, not applicable for material.

Abbreviations

ApoE −/− :

Apolipoprotein E knockout

AS:

Atherosclerosis

BMDMs:

Bone marrow-derived macrophages

BODIPY:

4,4-difluoro-1,3,5,7,8-pentamethyl-4-bora-3a,4a-diaza-s-indacene

CD36:

Cluster of differentiation 36 Deh dehydrocorydaline

DAPI:

4ʹ,6-diamidino-2-phenylindole

DEGs:

Differentially expressed genes

Deh:

Dehydrocorydaline

DiI-oxLDL:

Dil-labeled oxLDL

GEO:

Gene Expression Omnibus

HFD:

High-fat diet

IF:

Immunofluorescence

MAPK:

Mitogen-activated protein kinase

M-CSF:

Macrophage colony-stimulating factor

Mfi:

Mean fluorescence intensity

mSMCs:

Mouse primary aortic SMCs

ORO:

Oil Red O

OxLDL:

Oxidized low-density lipoprotein

p-ERK1/2:

Phosphorylated ERK1/2

p-JNK:

Phosphorylated JNK

p-p38:

Phosphorylated p38

PPARγ:

Peroxisome proliferator activated-receptor gamma

SMCs:

Vascular smooth muscle cells

t-ERK1/2:

Total ERK1/2

t-JNK:

Total JNK

t-p38:

Total p38

TREM2:

Triggering receptor expressed on myeloid cells 2

α-SMA:

α-Smooth muscle actin

References

  1. Herrington W, Lacey B, Sherliker P, Armitage J, Lewington S (2016) Epidemiology of atherosclerosis and the potential to reduce the global burden of atherothrombotic disease. Circ Res 118:535–546. https://doi.org/10.1161/CIRCRESAHA.115.307611

    Article  CAS  PubMed  Google Scholar 

  2. Benjamin EJ, Blaha MJ, Chiuve SE, Cushman M, Das SR, Deo R et al (2017) Heart disease and stroke statistics-2017 update: a report from the American Heart Association. Circulation 135:e146–e603. https://doi.org/10.1161/CIR.0000000000000485

    Article  PubMed  PubMed Central  Google Scholar 

  3. Pi S, Mao L, Chen J, Shi H, Liu Y, Guo X et al (2021) The P2RY12 receptor promotes VSMC-derived foam cell formation by inhibiting autophagy in advanced atherosclerosis. Autophagy 17:980–1000. https://doi.org/10.1080/15548627.2020.1741202

    Article  CAS  PubMed  Google Scholar 

  4. Tabas I, Bornfeldt KE (2016) Macrophage phenotype and function in different stages of atherosclerosis. Circ Res 118:653–667. https://doi.org/10.1161/CIRCRESAHA.115.306256

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Allahverdian S, Chehroudi AC, McManus BM, Abraham T, Francis GA (2014) Contribution of intimal smooth muscle cells to cholesterol accumulation and macrophage-like cells in human atherosclerosis. Circulation 129:1551–1559. https://doi.org/10.1161/CIRCULATIONAHA.113.005015

    Article  CAS  PubMed  Google Scholar 

  6. Feil S, Fehrenbacher B, Lukowski R, Essmann F, Schulze-Osthoff K, Schaller M et al (2014) Transdifferentiation of vascular smooth muscle cells to macrophage-like cells during atherogenesis. Circ Res 115:662–667. https://doi.org/10.1161/CIRCRESAHA.115.304634

    Article  CAS  PubMed  Google Scholar 

  7. Wang D, Yang Y, Lei Y, Tzvetkov NT, Liu X, Yeung AWK et al (2019) Targeting foam cell formation in atherosclerosis: therapeutic potential of natural products. Pharmacol Rev 71:596–670. https://doi.org/10.1124/pr.118.017178

    Article  CAS  PubMed  Google Scholar 

  8. Childs BG, Baker DJ, Wijshake T, Conover CA, Campisi J, van Deursen JM (2016) Senescent intimal foam cells are deleterious at all stages of atherosclerosis. Science 354:472–477. https://doi.org/10.1126/science.aaf6659

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Deczkowska A, Weiner A, Amit I (2020) The physiology, pathology, and potential therapeutic applications of the TREM2 signaling pathway. Cell 181:1207–1217. https://doi.org/10.1016/j.cell.2020.05.003

    Article  CAS  PubMed  Google Scholar 

  10. Shi Y, Holtzman DM (2018) Interplay between innate immunity and Alzheimer disease: APOE and TREM2 in the spotlight. Nat Rev Immunol 18:759–772. https://doi.org/10.1038/s41577-018-0051-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Kober DL, Brett TJ (2017) TREM2–ligand interactions in health and disease. J Mol Biol 429:1607–1629. https://doi.org/10.1016/j.jmb.2017.04.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Zhang J, Liu Y, Zheng Y, Luo Y, Du Y, Zhao Y et al (2020) TREM-2-p38 MAPK signaling regulates neuroinflammation during chronic cerebral hypoperfusion combined with diabetes mellitus. J Neuroinflammation 17:2. https://doi.org/10.1186/s12974-019-1688-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Jaitin DA, Adlung L, Thaiss CA, Weiner A, Li B, Descamps H et al (2019) Lipid-associated macrophages control metabolic homeostasis in a Trem2-dependent manner. Cell 178:686-698 e14. https://doi.org/10.1016/j.cell.2019.05.054

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Zernecke A, Winkels H, Cochain C, Williams JW, Wolf D, Soehnlein O et al (2020) Meta-analysis of leukocyte diversity in atherosclerotic mouse aortas. Circ Res 127:402–426. https://doi.org/10.1161/CIRCRESAHA.120.316903

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Damisah EC, Rai A, Grutzendler J (2020) TREM2: modulator of lipid metabolism in microglia. Neuron 105:759–761. https://doi.org/10.1016/j.neuron.2020.02.008

    Article  CAS  PubMed  Google Scholar 

  16. Depuydt MAC, Prange KHM, Slenders L, Ord T, Elbersen D, Boltjes A et al (2020) Microanatomy of the human atherosclerotic plaque by single-cell transcriptomics. Circ Res 127:1437–1455. https://doi.org/10.1161/CIRCRESAHA.120.316770

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Cochain C, Vafadarnejad E, Arampatzi P, Pelisek J, Winkels H, Ley K et al (2018) Single-cell RNA-Seq reveals the transcriptional landscape and heterogeneity of aortic macrophages in murine atherosclerosis. Circ Res 122:1661–1674. https://doi.org/10.1161/CIRCRESAHA.117.312509

    Article  CAS  PubMed  Google Scholar 

  18. Kim K, Shim D, Lee JS, Zaitsev K, Williams JW, Kim KW et al (2018) Transcriptome analysis reveals nonfoamy rather than foamy plaque macrophages are proinflammatory in atherosclerotic murine models. Circ Res 123:1127–1142. https://doi.org/10.1161/CIRCRESAHA.118.312804

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Reddick RL, Zhang SH, Maeda N (1994) Atherosclerosis in mice lacking apo E. Evaluation of lesional development and progression. Arterioscler Thromb 14:141–147. https://doi.org/10.1161/01.atv.14.1.141

    Article  CAS  PubMed  Google Scholar 

  20. Jawien J, Nastalek P, Korbut R (2004) Mouse models of experimental atherosclerosis. J Physiol Pharmacol 55:503–517

    CAS  PubMed  Google Scholar 

  21. Feng B, Zhang D, Kuriakose G, Devlin CM, Kockx M, Tabas I (2003) Niemann-Pick C heterozygosity confers resistance to lesional necrosis and macrophage apoptosis in murine atherosclerosis. Proc Natl Acad Sci USA 100:10423–10428. https://doi.org/10.1073/pnas.1732494100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Niu X, Pi SL, Baral S, Xia YP, He QW, Li YN et al (2017) P2Y12 promotes migration of vascular smooth muscle cells through cofilin dephosphorylation during atherogenesis. Arterioscler Thromb Vasc Biol 37:515–524. https://doi.org/10.1161/ATVBAHA.116.308725

    Article  CAS  PubMed  Google Scholar 

  23. Le Guezennec X, Brichkina A, Huang YF, Kostromina E, Han W, Bulavin DV (2012) Wip1-dependent regulation of autophagy, obesity, and atherosclerosis. Cell Metab 16:68–80. https://doi.org/10.1016/j.cmet.2012.06.003

    Article  CAS  PubMed  Google Scholar 

  24. Xu S, Huang Y, Xie Y, Lan T, Le K, Chen J et al (2010) Evaluation of foam cell formation in cultured macrophages: an improved method with Oil Red O staining and DiI-oxLDL uptake. Cytotechnology 62:473–481. https://doi.org/10.1007/s10616-010-9290-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Selvais CM, Davis-Lopez de Carrizosa MA, Nachit M, Versele R, Dubuisson N, Noel L et al (2023) AdipoRon enhances healthspan in middle-aged obese mice: striking alleviation of myosteatosis and muscle degenerative markers. J Cachexia Sarcopenia Muscle 14:464–478. https://doi.org/10.1002/jcsm.13148

    Article  PubMed  Google Scholar 

  26. Niu X, Pi SL, Baral S, Xia YP, He QW, Li YN et al (2017) P2Y(12) promotes migration of vascular smooth muscle cells through cofilin dephosphorylation during atherogenesis. Arterioscler Thromb Vasc Biol 37:515–524. https://doi.org/10.1161/ATVBAHA.116.308725

    Article  CAS  PubMed  Google Scholar 

  27. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method. Methods 25:402–408. https://doi.org/10.1006/meth.2001.1262

    Article  CAS  PubMed  Google Scholar 

  28. Cochain C, Saliba AE, Zernecke A (2018) Letter by cochain et al regarding article, “Transcriptome analysis reveals nonfoamy rather than foamy plaque macrophages are proinflammatory in atherosclerotic murine models.” Circ Res 123:e48–e49. https://doi.org/10.1161/CIRCRESAHA.118.314120

    Article  CAS  PubMed  Google Scholar 

  29. Yang S, Xia YP, Luo XY, Chen SL, Li BW, Ye ZM et al (2019) Exosomal CagA derived from Helicobacter pylori-infected gastric epithelial cells induces macrophage foam cell formation and promotes atherosclerosis. J Mol Cell Cardiol 135:40–51. https://doi.org/10.1016/j.yjmcc.2019.07.011

    Article  CAS  PubMed  Google Scholar 

  30. Yeh FL, Wang Y, Tom I, Gonzalez LC, Sheng M (2016) TREM2 binds to apolipoproteins, including APOE and CLU/APOJ, and thereby facilitates uptake of amyloid-beta by microglia. Neuron 91:328–340. https://doi.org/10.1016/j.neuron.2016.06.015

    Article  CAS  PubMed  Google Scholar 

  31. Wang H, Franco F, Tsui YC, Xie X, Trefny MP, Zappasodi R et al (2020) CD36-mediated metabolic adaptation supports regulatory T cell survival and function in tumors. Nat Immunol 21:298–308. https://doi.org/10.1038/s41590-019-0589-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Zhang C, Luo X, Chen J, Zhou B, Yang M, Liu R et al (2019) Osteoprotegerin promotes liver steatosis by targeting the ERK-PPAR-gamma-CD36 pathway. Diabetes 68:1902–1914. https://doi.org/10.2337/db18-1055

    Article  CAS  PubMed  Google Scholar 

  33. Chen CH, Leu SJ, Hsu CP, Pan CC, Shyue SK, Lee TS (2021) Atypical antipsychotic drugs deregulate the cholesterol metabolism of macrophage-foam cells by activating NOX-ROS-PPARgamma-CD36 signaling pathway. Metabolism 123:154847. https://doi.org/10.1016/j.metabol.2021.154847

    Article  CAS  PubMed  Google Scholar 

  34. Cargnello M, Roux PP (2011) Activation and function of the MAPKs and their substrates, the MAPK-activated protein kinases. Microbiol Mol Biol Rev 75:50–83. https://doi.org/10.1128/MMBR.00031-10

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Kim EK, Choi EJ (2015) Compromised MAPK signaling in human diseases: an update. Arch Toxicol 89:867–882. https://doi.org/10.1007/s00204-015-1472-2

    Article  CAS  PubMed  Google Scholar 

  36. Oppi S, Nusser-Stein S, Blyszczuk P, Wang X, Jomard A, Marzolla V et al (2020) Macrophage NCOR1 protects from atherosclerosis by repressing a pro-atherogenic PPARgamma signature. Eur Heart J 41:995–1005. https://doi.org/10.1093/eurheartj/ehz667

    Article  CAS  PubMed  Google Scholar 

  37. Haass C (2021) Loss of TREM2 facilitates tau accumulation, spreading, and brain atrophy, but only in the presence of amyloid pathology. Neuron 109:1243–1245. https://doi.org/10.1016/j.neuron.2021.03.029

    Article  CAS  PubMed  Google Scholar 

  38. Lee SH, Meilandt WJ, Xie L, Gandham VD, Ngu H, Barck KH et al (2021) Trem2 restrains the enhancement of tau accumulation and neurodegeneration by beta-amyloid pathology. Neuron 109:1283-1301 e6. https://doi.org/10.1016/j.neuron.2021.02.010

    Article  CAS  PubMed  Google Scholar 

  39. Park M, Yi JW, Kim EM, Yoon IJ, Lee EH, Lee HY et al (2015) Triggering receptor expressed on myeloid cells 2 (TREM2) promotes adipogenesis and diet-induced obesity. Diabetes 64:117–127. https://doi.org/10.2337/db13-1869

    Article  CAS  PubMed  Google Scholar 

  40. Nugent AA, Lin K, van Lengerich B, Lianoglou S, Przybyla L, Davis SS et al (2020) TREM2 regulates microglial cholesterol metabolism upon chronic phagocytic challenge. Neuron 105:837-854 e9. https://doi.org/10.1016/j.neuron.2019.12.007

    Article  CAS  PubMed  Google Scholar 

  41. Ulland TK, Song WM, Huang SC, Ulrich JD, Sergushichev A, Beatty WL et al (2017) TREM2 maintains microglial metabolic fitness in Alzheimer’s disease. Cell 170:649-663 e13. https://doi.org/10.1016/j.cell.2017.07.023

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Willemsen L, de Winther MP (2020) Macrophage subsets in atherosclerosis as defined by single-cell technologies. J Pathol 250:705–714. https://doi.org/10.1002/path.5392

    Article  PubMed  PubMed Central  Google Scholar 

  43. Xu YL, Liu XY, Cheng SB, He PK, Hong MK, Chen YY et al (2020) Geniposide enhances macrophage autophagy through downregulation of TREM2 in atherosclerosis. Am J Chin Med 48:1821–1840. https://doi.org/10.1142/S0192415X20500913

    Article  CAS  PubMed  Google Scholar 

  44. Do TH, Ma F, Andrade PR, Teles R, de Andrade Silva BJ, Hu C et al (2022) TREM2 macrophages induced by human lipids drive inflammation in acne lesions. Sci Immunol 7:eabo2787. https://doi.org/10.1126/sciimmunol.abo2787

    Article  CAS  PubMed  Google Scholar 

  45. Bartels ED, Christoffersen C, Lindholm MW, Nielsen LB (2015) Altered metabolism of LDL in the arterial wall precedes atherosclerosis regression. Circ Res 117:933–942. https://doi.org/10.1161/CIRCRESAHA.115.307182

    Article  CAS  PubMed  Google Scholar 

  46. Ouimet M, Marcel YL (2012) Regulation of lipid droplet cholesterol efflux from macrophage foam cells. Arterioscler Thromb Vasc Biol 32:575–581. https://doi.org/10.1161/ATVBAHA.111.240705

    Article  CAS  PubMed  Google Scholar 

  47. Matsuo M (2022) ABCA1 and ABCG1 as potential therapeutic targets for the prevention of atherosclerosis. J Pharmacol Sci 148:197–203. https://doi.org/10.1016/j.jphs.2021.11.005

    Article  CAS  PubMed  Google Scholar 

  48. Yu XH, Fu YC, Zhang DW, Yin K, Tang CK (2013) Foam cells in atherosclerosis. Clin Chim Acta 424:245–252. https://doi.org/10.1016/j.cca.2013.06.006

    Article  CAS  PubMed  Google Scholar 

  49. Platt N, Gordon S (2001) Is the class A macrophage scavenger receptor (SR-A) multifunctional?—The mouse’s tale. J Clin Invest 108:649–654. https://doi.org/10.1172/JCI13903

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Shu H, Peng Y, Hang W, Nie J, Zhou N, Wang DW (2022) The role of CD36 in cardiovascular disease. Cardiovasc Res 118:115–129. https://doi.org/10.1093/cvr/cvaa319

    Article  CAS  PubMed  Google Scholar 

  51. Linnartz-Gerlach B, Bodea LG, Klaus C, Ginolhac A, Halder R, Sinkkonen L et al (2019) TREM2 triggers microglial density and age-related neuronal loss. Glia 67:539–550. https://doi.org/10.1002/glia.23563

    Article  PubMed  Google Scholar 

  52. Collot-Teixeira S, Martin J, McDermott-Roe C, Poston R, McGregor JL (2007) CD36 and macrophages in atherosclerosis. Cardiovasc Res 75:468–477. https://doi.org/10.1016/j.cardiores.2007.03.010

    Article  CAS  PubMed  Google Scholar 

  53. Tian K, Xu Y, Sahebkar A, Xu S (2020) CD36 in atherosclerosis: pathophysiological mechanisms and therapeutic implications. Curr Atheroscler Rep 22:59. https://doi.org/10.1007/s11883-020-00870-8

    Article  CAS  PubMed  Google Scholar 

  54. Hendrikx T, Porsch F, Kiss MG, Rajcic D, Papac-Milicevic N, Hoebinger C et al (2022) Soluble TREM2 levels reflect the recruitment and expansion of TREM2(+) macrophages that localize to fibrotic areas and limit NASH. J Hepatol. https://doi.org/10.1016/j.jhep.2022.06.004

    Article  PubMed  Google Scholar 

  55. Kim SM, Mun BR, Lee SJ, Joh Y, Lee HY, Ji KY et al (2017) TREM2 promotes Abeta phagocytosis by upregulating C/EBPalpha-dependent CD36 expression in microglia. Sci Rep 7:11118. https://doi.org/10.1038/s41598-017-11634-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Tontonoz P, Nagy L, Alvarez JG, Thomazy VA, Evans RM (1998) PPARgamma promotes monocyte/macrophage differentiation and uptake of oxidized LDL. Cell 93:241–252. https://doi.org/10.1016/s0092-8674(00)81575-5

    Article  CAS  PubMed  Google Scholar 

  57. Huang CC, Chou CA, Chen WY, Yang JL, Lee WC, Chen JB et al (2021) Empagliflozin ameliorates free fatty acid induced-lipotoxicity in renal proximal tubular cells via the PPARgamma/CD36 pathway in obese mice. Int J Mol Sci. https://doi.org/10.3390/ijms222212408

    Article  PubMed  PubMed Central  Google Scholar 

  58. Kotla S, Singh NK, Rao GN (2017) ROS via BTK-p300-STAT1-PPARgamma signaling activation mediates cholesterol crystals-induced CD36 expression and foam cell formation. Redox Biol 11:350–364. https://doi.org/10.1016/j.redox.2016.12.005

    Article  CAS  PubMed  Google Scholar 

  59. Wu L, Zhang S, Zhang Q, Wei S, Wang G, Luo P (2022) The molecular mechanism of hepatic lipid metabolism disorder caused by NaAsO2 through regulating the ERK/PPAR signaling pathway. Oxid Med Cell Longev 2022:6405911. https://doi.org/10.1155/2022/6405911

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Nicholson AC (2004) Expression of CD36 in macrophages and atherosclerosis: the role of lipid regulation of PPARgamma signaling. Trends Cardiovasc Med 14:8–12. https://doi.org/10.1016/j.tcm.2003.09.004

    Article  CAS  PubMed  Google Scholar 

  61. Feng J, Han J, Pearce SF, Silverstein RL, Gotto AM Jr, Hajjar DP et al (2000) Induction of CD36 expression by oxidized LDL and IL-4 by a common signaling pathway dependent on protein kinase C and PPAR-gamma. J Lipid Res 41:688–696

    Article  CAS  PubMed  Google Scholar 

  62. Li H, Ruan XZ, Powis SH, Fernando R, Mon WY, Wheeler DC et al (2005) EPA and DHA reduce LPS-induced inflammation responses in HK-2 cells: evidence for a PPAR-gamma-dependent mechanism. Kidney Int 67:867–874. https://doi.org/10.1111/j.1523-1755.2005.00151.x

    Article  CAS  PubMed  Google Scholar 

  63. Lim HJ, Lee S, Lee KS, Park JH, Jang Y, Lee EJ et al (2006) PPARgamma activation induces CD36 expression and stimulates foam cell like changes in rVSMCs. Prostaglandins Other Lipid Mediat 80:165–174. https://doi.org/10.1016/j.prostaglandins.2006.06.006

    Article  CAS  PubMed  Google Scholar 

  64. Lu Y, Zhang M, Wang S, Hong B, Wang Z, Li H et al (2014) p38 MAPK-inhibited dendritic cells induce superior antitumour immune responses and overcome regulatory T-cell-mediated immunosuppression. Nat Commun 5:4229. https://doi.org/10.1038/ncomms5229

    Article  CAS  PubMed  Google Scholar 

  65. Han Y, Wang J, Jin M, Jia L, Yan C, Wang Y (2021) Shentong Zhuyu decoction inhibits inflammatory response, migration, and invasion and promotes apoptosis of rheumatoid arthritis fibroblast-like synoviocytes via the MAPK p38/PPARgamma/CTGF pathway. Biomed Res Int 2021:6187695. https://doi.org/10.1155/2021/6187695

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Hua B, Liu Q, Gao S, Li W, Li H (2022) Protective role of activating PPARgamma in advanced glycation end products-induced impairment of coronary artery vasodilation via inhibiting p38 phosphorylation and reactive oxygen species production. Biomed Pharmacother 147:112641. https://doi.org/10.1016/j.biopha.2022.112641

    Article  CAS  PubMed  Google Scholar 

  67. Tian C, Jin X, Ye X, Wu H, Ren W, Zhang R et al (2014) Long term intake of 0.1% ethanol decreases serum adiponectin by suppressing PPARgamma expression via p38 MAPK pathway. Food Chem Toxicol 65:329–334. https://doi.org/10.1016/j.fct.2014.01.007

    Article  CAS  PubMed  Google Scholar 

  68. Liu Y, Shepherd EG, Nelin LD (2007) MAPK phosphatases-regulating the immune response. Nat Rev Immunol 7:202–212. https://doi.org/10.1038/nri2035

    Article  CAS  PubMed  Google Scholar 

  69. Bassi R, Heads R, Marber MS, Clark JE (2008) Targeting p38-MAPK in the ischaemic heart: kill or cure? Curr Opin Pharmacol 8:141–146. https://doi.org/10.1016/j.coph.2008.01.002

    Article  CAS  PubMed  Google Scholar 

  70. Huang W, Lv Q, Xiao Y, Zhong Z, Hu B, Yan S et al (2021) triggering receptor expressed on myeloid cells 2 protects dopaminergic neurons by promoting autophagy in the inflammatory pathogenesis of Parkinson’s disease. Front Neurosci 15:745815. https://doi.org/10.3389/fnins.2021.745815

    Article  PubMed  PubMed Central  Google Scholar 

  71. Su VY, Yang KY, Chiou SH, Chen NJ, Mo MH, Lin CS et al (2019) Induced pluripotent stem cells regulate triggering receptor expressed on myeloid cell-1 expression and the p38 mitogen-activated protein kinase pathway in endotoxin-induced acute lung injury. Stem Cells 37:631–639. https://doi.org/10.1002/stem.2980

    Article  CAS  PubMed  Google Scholar 

  72. Ruganzu JB, Peng X, He Y, Wu X, Zheng Q, Ding B et al (2022) Downregulation of TREM2 expression exacerbates neuroinflammatory responses through TLR4-mediated MAPK signaling pathway in a transgenic mouse model of Alzheimer’s disease. Mol Immunol 142:22–36. https://doi.org/10.1016/j.molimm.2021.12.018

    Article  CAS  PubMed  Google Scholar 

  73. Gessi S, Fogli E, Sacchetto V, Merighi S, Varani K, Preti D et al (2010) Adenosine modulates HIF-1{alpha}, VEGF, IL-8, and foam cell formation in a human model of hypoxic foam cells. Arterioscler Thromb Vasc Biol 30:90–97. https://doi.org/10.1161/ATVBAHA.109.194902

    Article  CAS  PubMed  Google Scholar 

  74. Hopkins PN (2013) Molecular biology of atherosclerosis. Physiol Rev 93:1317–1542. https://doi.org/10.1152/physrev.00004.2012

    Article  CAS  PubMed  Google Scholar 

  75. Ren M, Guo Y, Wei X, Yan S, Qin Y, Zhang X et al (2018) TREM2 overexpression attenuates neuroinflammation and protects dopaminergic neurons in experimental models of Parkinson’s disease. Exp Neurol 302:205–213. https://doi.org/10.1016/j.expneurol.2018.01.016

    Article  CAS  PubMed  Google Scholar 

  76. Libby P, Buring JE, Badimon L, Hansson GK, Deanfield J, Bittencourt MS et al (2019) Atherosclerosis. Nat Rev Dis Primers 5:56. https://doi.org/10.1038/s41572-019-0106-z

    Article  PubMed  Google Scholar 

  77. Cholesterol Treatment Trialists C, Baigent C, Blackwell L, Emberson J, Holland LE, Reith C et al (2010) Efficacy and safety of more intensive lowering of LDL cholesterol: a meta-analysis of data from 170,000 participants in 26 randomised trials. Lancet 376:1670–1681. https://doi.org/10.1016/S0140-6736(10)61350-5

    Article  CAS  Google Scholar 

  78. Collins R, Reith C, Emberson J, Armitage J, Baigent C, Blackwell L et al (2016) Interpretation of the evidence for the efficacy and safety of statin therapy. Lancet 388:2532–2561. https://doi.org/10.1016/S0140-6736(16)31357-5

    Article  CAS  PubMed  Google Scholar 

  79. Zheng SL, Roddick AJ (2019) Association of aspirin use for primary prevention with cardiovascular events and bleeding events: a systematic review and meta-analysis. JAMA 321:277–287. https://doi.org/10.1001/jama.2018.20578

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Antithrombotic Trialists C (2002) Collaborative meta-analysis of randomised trials of antiplatelet therapy for prevention of death, myocardial infarction, and stroke in high risk patients. BMJ 324:71–86. https://doi.org/10.1136/bmj.324.7329.71

    Article  Google Scholar 

Download references

Acknowledgements

We thank the Central Laboratory of Union Hospital of Tongji Medical College for providing a confocal microscope and flow cytometer.

Funding

This work was supported by the National Natural Science Foundation of China (no. 81974182 and no. 82171325 to LM).

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: LM; methodology: XG and BL; formal analysis and investigation: XG, CW, FZ, XX, LN, and JC; writing–original draft preparation: XG and BL; writing–review and editing: LM and XG; funding acquisition: LM.

Corresponding author

Correspondence to Ling Mao.

Ethics declarations

Conflict of interest

The authors have no relevant financial or non-financial interests to disclose.

Ethics approval

This study was approved by the Tongji Medical School of Huazhong Technology University, China.

Consent to participate

Not applicable.

Consent for publication

All authors have been involved in writing the manuscript and consented to publication.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

18_2023_4786_MOESM1_ESM.pdf

Supplementary file1Fig. S1 TREM2 has no significant effect on body weight, lipid profile or collagen deposition. a. Antibody specificity validation of TREM2 molecules (red) in Trem2−/− mice. Scale bar: 50 µm. Nuclei were stained with DAPI (blue). b, Genotyping of TREM2 gene knockout in mice. Average body weights (c) and lipid profiles (d) of Trem2+/+/ApoE−/− and Trem2−/−/ApoE−/− mice (n = 6/group, student’s t-test). e, The percentage of collagen content and the thickness of fibrous caps were assessed in Masson staining images. Scale bar: 200 μm (n = 6/group, student’s t-test). *P < 0.05; ns, P > 0.05 (PDF 4323 KB)

18_2023_4786_MOESM2_ESM.pdf

Supplementary file2Fig. S2 TREM2 deficiency decreases CD36 expression. a, PCR-detected lentivirus overexpressing TREM2 in RAW264.7 cells and mSMCs (n = 6-7/group, student’s t-test). b, TREM2 stimulates primary BMDM foam cell formation. BMDMs isolated from Trem2+/+ and Trem2−/− mice were stimulated with oxLDL at 50 µg/mL for 24 h. Then the cells were incubated with BODIPY in DMEM for 1 h. A flow analyzer evaluated the mFI of the two groups of cells (n = 3/group, student’s t-test). c, Quantitative real-time PCR analysis of the mRNA levels of MSR1, OLR1, ABCA1 and ABCG1 in macrophages and mSMCs in the LV-GFP or LV-TREM2 group. Data are normalized to ACTB expression (n = 6/group, student’s t-test). d, Relative expression of CD36 (green) at the aortic sinus in Trem2+/+/ApoE−/− and Trem2−/−/ApoE−/− mice by immunofluorescence (n = 4/group, student’s t-test). Scale bar: 50 µm. e, Quantitative real-time PCR analysis of the mRNA levels of CD36 in primary BMDMs and mSMCs isolated from Trem2+/+ and Trem2−/− mice (n = 4/group, student’s t-test). *P < 0.05, **P < 0.01, ****P < 0.0001; ns, P > 0.05; mFI, mean fluorescence intensity (PDF 1510 KB)

18_2023_4786_MOESM3_ESM.pdf

Supplementary file3Fig. S3 Knockout of the TREM2 gene inhibits lipid uptake. a, Flow analysis showed the mFI of BMDMs isolated from Trem2+/+ and Trem2−/− mice stimulated with DiI-oxLDL at 10 µg/mL for 4 h (n = 3/group, student’s t-test). b, WB and PCR levels of CD36 expression in macrophages and mSMCs transfected with the control vector (NC) or the CD36 siRNA (siCD36, n = 4-6/group, student’s t-test). *P < 0.05, **P < 0.01, ****P < 0.0001; mFI, mean fluorescence intensity (PDF 123 KB)

Supplementary file4 (DOCX 27 KB)

Supplementary file5 (DOCX 25 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guo, X., Li, B., Wen, C. et al. TREM2 promotes cholesterol uptake and foam cell formation in atherosclerosis. Cell. Mol. Life Sci. 80, 137 (2023). https://doi.org/10.1007/s00018-023-04786-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00018-023-04786-9

Keywords

Navigation