Skip to main content
Log in

Extracellular Matrix and Fibroblast Communication Following Myocardial Infarction

  • Published:
Journal of Cardiovascular Translational Research Aims and scope Submit manuscript

Abstract

The extracellular matrix (ECM) provides structural support by serving as a scaffold for cells, and as such the ECM maintains normal tissue homeostasis and mediates the repair response following injury. In response to myocardial infarction (MI), ECM expression is generally upregulated in the left ventricle (LV), which regulates LV remodeling by modulating scar formation. The ECM directly affects scar formation by regulating growth factor release and cell adhesion and indirectly affects scar formation by regulating the inflammatory, angiogenic, and fibroblast responses. This review summarizes the current literature on ECM expression patterns and fibroblast mechanisms in the myocardium, focusing on the ECM response to MI. In addition, we discuss future research areas that are needed to better understand the molecular mechanisms of ECM action, both in general and as a means to optimize infarct healing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Frangogiannis, N. G. (2012). Matricellular proteins in cardiac adaptation and disease. Physiological Reviews, 92(2), 635–688. doi:10.1152/physrev.00008.2011.

    Article  PubMed  CAS  Google Scholar 

  2. Lindsey, M. L., & Zamilpa, R. (2012). Temporal and spatial expression of matrix metalloproteinases and tissue inhibitors of metalloproteinases following myocardial infarction. Cardiovascular Therapeutics, 30(1), 31–41. doi:10.1111/j.1755-5922.2010.00207.x.

    Article  PubMed  CAS  Google Scholar 

  3. Ma, Y., Chiao, Y. A., Zhang, J., Manicone, A. M., Jin, Y. F., & Lindsey, M. L. (2012). Matrix metalloproteinase-28 deletion amplifies inflammatory and extracellular matrix responses to cardiac aging. Microscopy and Microanalysis: The Official Journal of Microscopy Society of America, Microbeam Analysis Society, Microscopical Society of Canada, 18(1), 81–90. doi:10.1017/S1431927611012220.

    CAS  Google Scholar 

  4. Chiao, Y. A., Zamilpa, R., Lopez, E. F., Dai, Q., Escobar, G. P., Hakala, K., et al. (2010). In vivo matrix metalloproteinase-7 substrates identified in the left ventricle post-myocardial infarction using proteomics. Journal of Proteome Research, 9(5), 2649–2657. doi:10.1021/pr100147r.

    Article  PubMed  CAS  Google Scholar 

  5. Bowers, S. L., Banerjee, I., & Baudino, T. A. (2010). The extracellular matrix: at the center of it all. Journal of Molecular and Cellular Cardiology, 48(3), 474–482. doi:10.1016/j.yjmcc.2009.08.024.

    Article  PubMed  CAS  Google Scholar 

  6. van den Borne, S. W., Diez, J., Blankesteijn, W. M., Verjans, J., Hofstra, L., & Narula, J. (2010). Myocardial remodeling after infarction: the role of myofibroblasts. Nature Reviews Cardiology, 7(1), 30–37. doi:10.1038/nrcardio.2009.199.

    Article  PubMed  Google Scholar 

  7. Lindsey, M. L., Escobar, G. P., Dobrucki, L. W., Goshorn, D. K., Bouges, S., Mingoia, J. T., et al. (2006). Matrix metalloproteinase-9 gene deletion facilitates angiogenesis after myocardial infarction. American Journal of Physiology-Heart and Circulatory Physiology, 290(1), H232–239. doi:10.1152/ajpheart.00457.2005.

    Article  PubMed  CAS  Google Scholar 

  8. Ma, Y., Lindsey, M. L., & Halade, G. V. (2012). DHA derivatives of fish oil as dietary supplements: a nutrition-based drug discovery approach for therapies to prevent metabolic cardiotoxicity. Expert Opinion on Drug Discovery, 7(8), 711–721. doi:10.1517/17460441.2012.694862.

    Article  PubMed  CAS  Google Scholar 

  9. Zamilpa, R., & Lindsey, M. L. (2010). Extracellular matrix turnover and signaling during cardiac remodeling following MI: causes and consequences. Journal of Molecular and Cellular Cardiology, 48(3), 558–563. doi:10.1016/j.yjmcc.2009.06.012.

    Article  PubMed  CAS  Google Scholar 

  10. Spinale, F. G. (2007). Myocardial matrix remodeling and the matrix metalloproteinases: influence on cardiac form and function. Physiological Reviews, 87(4), 1285–1342. doi:10.1152/physrev.00012.2007.

    Article  PubMed  CAS  Google Scholar 

  11. Sun, Y., & Weber, K. T. (2000). Infarct scar: a dynamic tissue. Cardiovascular Research, 46(2), 250–256.

    Article  PubMed  CAS  Google Scholar 

  12. Hirsch, A. T., Talsness, C. E., Schunkert, H., Paul, M., & Dzau, V. J. (1991). Tissue-specific activation of cardiac angiotensin converting enzyme in experimental heart failure. Circulation Research, 69(2), 475–482.

    Article  PubMed  CAS  Google Scholar 

  13. Porter, K. E., & Turner, N. A. (2009). Cardiac fibroblasts: at the heart of myocardial remodeling. Pharmacology & Therapeutics, 123(2), 255–278. doi:10.1016/j.pharmthera.2009.05.002.

    Article  CAS  Google Scholar 

  14. Ma, Y., Zhang, X., Bao, H., Mi, S., Cai, W., Yan, H., et al. (2012). Toll-like receptor (TLR) 2 and TLR4 differentially regulate doxorubicin induced cardiomyopathy in mice. PLoS One, 7(7), e40763. doi:10.1371/journal.pone.0040763.

    Article  PubMed  CAS  Google Scholar 

  15. Daskalopoulos, E. P., Janssen, B. J., & Blankesteijn, W. M. (2012). Myofibroblasts in the infarct area: concepts and challenges. Microscopy and Microanalysis, 18(1), 35–49. doi:10.1017/S143192761101227X.

    Article  PubMed  CAS  Google Scholar 

  16. Laeremans, H., Hackeng, T. M., van Zandvoort, M. A., Thijssen, V. L., Janssen, B. J., Ottenheijm, H. C., et al. (2011). Blocking of frizzled signaling with a homologous peptide fragment of wnt3a/wnt5a reduces infarct expansion and prevents the development of heart failure after myocardial infarction. Circulation, 124(15), 1626–1635. doi:10.1161/CIRCULATIONAHA.110.976969.

    Article  PubMed  CAS  Google Scholar 

  17. Jourdan-Lesaux, C., Zhang, J., & Lindsey, M. L. (2010). Extracellular matrix roles during cardiac repair. Life Sciences, 87(13–14), 391–400. doi:10.1016/j.lfs.2010.07.010.

    Article  PubMed  CAS  Google Scholar 

  18. Medugorac, I. (1982). Characterization of intramuscular collagen in mammalian left ventricle. Basic Research in Cardiology, 77(6), 589–598.

    Article  PubMed  CAS  Google Scholar 

  19. Murakami, M., Kusachi, S., Nakahama, M., Naito, I., Murakami, T., Doi, M., et al. (1998). Expression of the alpha 1 and alpha 2 chains of type IV collagen in the infarct zone of rat myocardial infarction. Journal of Molecular and Cellular Cardiology, 30(6), 1191–1202. doi:10.1006/jmcc.1998.0684.

    Article  PubMed  CAS  Google Scholar 

  20. Shamhart, P. E., & Meszaros, J. G. (2010). Non-fibrillar collagens: key mediators of post-infarction cardiac remodeling? Journal of Molecular and Cellular Cardiology, 48(3), 530–537. doi:10.1016/j.yjmcc.2009.06.017.

    Article  PubMed  CAS  Google Scholar 

  21. Matsui, Y., Ikesue, M., Danzaki, K., Morimoto, J., Sato, M., Tanaka, S., et al. (2011). Syndecan-4 prevents cardiac rupture and dysfunction after myocardial infarction. Circulation Research, 108(11), 1328–1339. doi:10.1161/CIRCRESAHA.110.235689.

    Article  PubMed  CAS  Google Scholar 

  22. Ricard-Blum, S., & Ballut, L. (2011). Matricryptins derived from collagens and proteoglycans. Frontiers in Bioscience, 16, 674–697.

    Article  PubMed  CAS  Google Scholar 

  23. Zamilpa, R., Lopez, E. F., Chiao, Y. A., Dai, Q., Escobar, G. P., Hakala, K., et al. (2010). Proteomic analysis identifies in vivo candidate matrix metalloproteinase-9 substrates in the left ventricle post-myocardial infarction. Proteomics, 10(11), 2214–2223. doi:10.1002/pmic.200900587.

    Article  PubMed  CAS  Google Scholar 

  24. Arslan, F., Smeets, M. B., Riem Vis, P. W., Karper, J. C., Quax, P. H., Bongartz, L. G., et al. (2011). Lack of fibronectin-EDA promotes survival and prevents adverse remodeling and heart function deterioration after myocardial infarction. Circulation Research, 108(5), 582–592. doi:10.1161/CIRCRESAHA.110.224428.

    Article  PubMed  CAS  Google Scholar 

  25. Gondokaryono, S. P., Ushio, H., Niyonsaba, F., Hara, M., Takenaka, H., Jayawardana, S. T., et al. (2007). The extra domain A of fibronectin stimulates murine mast cells via toll-like receptor 4. Journal of Leukocyte Biology, 82(3), 657–665. doi:10.1189/jlb.1206730.

    Article  PubMed  CAS  Google Scholar 

  26. Liao, Y. F., Gotwals, P. J., Koteliansky, V. E., Sheppard, D., & Van De Water, L. (2002). The EIIIA segment of fibronectin is a ligand for integrins alpha 9beta 1 and alpha 4beta 1 providing a novel mechanism for regulating cell adhesion by alternative splicing. Journal of Biological Chemistry, 277(17), 14467–14474. doi:10.1074/jbc.M201100200.

    Article  PubMed  CAS  Google Scholar 

  27. Serini, G., Bochaton-Piallat, M. L., Ropraz, P., Geinoz, A., Borsi, L., Zardi, L., et al. (1998). The fibronectin domain ED-A is crucial for myofibroblastic phenotype induction by transforming growth factor-beta1. The Journal of Cell Biology, 142(3), 873–881.

    Article  PubMed  CAS  Google Scholar 

  28. Fukuda, T., Yoshida, N., Kataoka, Y., Manabe, R., Mizuno-Horikawa, Y., Sato, M., et al. (2002). Mice lacking the EDB segment of fibronectin develop normally but exhibit reduced cell growth and fibronectin matrix assembly in vitro. Cancer Research, 62(19), 5603–5610.

    PubMed  CAS  Google Scholar 

  29. Aumailley, M., Bruckner-Tuderman, L., Carter, W. G., Deutzmann, R., Edgar, D., Ekblom, P., et al. (2005). A simplified laminin nomenclature. Matrix Biology, 24(5), 326–332. doi:10.1016/j.matbio.2005.05.006.

    Article  PubMed  CAS  Google Scholar 

  30. Morishita, N., Kusachi, S., Yamasaki, S., Kondo, J., & Tsuji, T. (1996). Sequential changes in laminin and type IV collagen in the infarct zone—immunohistochemical study in rat myocardial infarction. Japanese Circulation Journal, 60(2), 108–114.

    Article  PubMed  CAS  Google Scholar 

  31. Dinh, W., Bansemir, L., Futh, R., Nickl, W., Stasch, J. P., Coll-Barroso, M., et al. (2009). Increased levels of laminin and collagen type VI may reflect early remodelling in patients with acute myocardial infarction. Acta Cardiologica, 64(3), 329–334.

    Article  PubMed  Google Scholar 

  32. van Dijk, A., Niessen, H. W., Zandieh Doulabi, B., Visser, F. C., & van Milligen, F. J. (2008). Differentiation of human adipose-derived stem cells towards cardiomyocytes is facilitated by laminin. Cell and Tissue Research, 334(3), 457–467. doi:10.1007/s00441-008-0713-6.

    Article  PubMed  Google Scholar 

  33. Bornstein, P. (2009). Matricellular proteins: an overview. Journal of Cell Communication and Signaling, 3(3–4), 163–165. doi:10.1007/s12079-009-0069-z.

    Article  PubMed  Google Scholar 

  34. Dobaczewski, M., Gonzalez-Quesada, C., & Frangogiannis, N. G. (2010). The extracellular matrix as a modulator of the inflammatory and reparative response following myocardial infarction. Journal of Molecular and Cellular Cardiology, 48(3), 504–511. doi:10.1016/j.yjmcc.2009.07.015.

    Article  PubMed  CAS  Google Scholar 

  35. Chen, C. C., & Lau, L. F. (2009). Functions and mechanisms of action of CCN matricellular proteins. The International Journal of Biochemistry & Cell Biology, 41(4), 771–783. doi:10.1016/j.biocel.2008.07.025.

    Article  CAS  Google Scholar 

  36. Hilfiker-Kleiner, D., Kaminski, K., Kaminska, A., Fuchs, M., Klein, G., Podewski, E., et al. (2004). Regulation of proangiogenic factor CCN1 in cardiac muscle: impact of ischemia, pressure overload, and neurohumoral activation. Circulation, 109(18), 2227–2233. doi:10.1161/01.CIR.0000127952.90508.9D.

    Article  PubMed  CAS  Google Scholar 

  37. Lobel, M., Bauer, S., Meisel, C., Eisenreich, A., Kudernatsch, R., Tank, J., Rauch, U., Kuhl, U., Schultheiss, H.P., Volk, H.D., Poller, W., Scheibenbogen, C. (2012). CCN1: a novel inflammation-regulated biphasic immune cell migration modulator. Cellular and Molecular Life Sciences. doi:10.1007/s00018-012-0981-x.

  38. Juric, V., Chen, C. C., & Lau, L. F. (2009). Fas-mediated apoptosis is regulated by the extracellular matrix protein CCN1 (CYR61) in vitro and in vivo. Molecular and Cellular Biology, 29(12), 3266–3279. doi:10.1128/MCB.00064-09.

    Article  PubMed  CAS  Google Scholar 

  39. Rother, M., Krohn, S., Kania, G., Vanhoutte, D., Eisenreich, A., Wang, X., et al. (2010). Matricellular signaling molecule CCN1 attenuates experimental autoimmune myocarditis by acting as a novel immune cell migration modulator. Circulation, 122(25), 2688–2698. doi:10.1161/CIRCULATIONAHA.110.945261.

    Article  PubMed  CAS  Google Scholar 

  40. Jun, J. I., & Lau, L. F. (2010). The matricellular protein CCN1 induces fibroblast senescence and restricts fibrosis in cutaneous wound healing. Nature Cell Biology, 12(7), 676–685. doi:10.1038/ncb2070.

    Article  PubMed  CAS  Google Scholar 

  41. Ohnishi, H., Oka, T., Kusachi, S., Nakanishi, T., Takeda, K., Nakahama, M., et al. (1998). Increased expression of connective tissue growth factor in the infarct zone of experimentally induced myocardial infarction in rats. Journal of Molecular and Cellular Cardiology, 30(11), 2411–2422. doi:10.1006/jmcc.1998.0799.

    Article  PubMed  CAS  Google Scholar 

  42. Holmes, A., Abraham, D. J., Sa, S., Shiwen, X., Black, C. M., & Leask, A. (2001). CTGF and SMADs, maintenance of scleroderma phenotype is independent of SMAD signaling. Journal of Biological Chemistry, 276(14), 10594–10601. doi:10.1074/jbc.M010149200.

    Article  PubMed  CAS  Google Scholar 

  43. Ahmed, M. S., Gravning, J., Martinov, V. N., von Lueder, T. G., Edvardsen, T., Czibik, G., et al. (2011). Mechanisms of novel cardioprotective functions of CCN2/CTGF in myocardial ischemia-reperfusion injury. American Journal of Physiology - Heart and Circulatory Physiology, 300(4), H1291–1302. doi:10.1152/ajpheart.00604.2010.

    Article  PubMed  CAS  Google Scholar 

  44. Colston, J. T., de la Rosa, S. D., Koehler, M., Gonzales, K., Mestril, R., Freeman, G. L., et al. (2007). Wnt-induced secreted protein-1 is a prohypertrophic and profibrotic growth factor. American Journal of Physiology - Heart and Circulatory Physiology, 293(3), H1839–1846. doi:10.1152/ajpheart.00428.2007.

    Article  PubMed  CAS  Google Scholar 

  45. Yoon, P. O., Lee, M. A., Cha, H., Jeong, M. H., Kim, J., Jang, S. P., et al. (2010). The opposing effects of CCN2 and CCN5 on the development of cardiac hypertrophy and fibrosis. Journal of Molecular and Cellular Cardiology, 49(2), 294–303. doi:10.1016/j.yjmcc.2010.04.010.

    Article  PubMed  CAS  Google Scholar 

  46. Denhardt, D. T., Noda, M., O’Regan, A. W., Pavlin, D., & Berman, J. S. (2001). Osteopontin as a means to cope with environmental insults: regulation of inflammation, tissue remodeling, and cell survival. Journal of Clinical Investigation, 107(9), 1055–1061. doi:10.1172/JCI12980.

    Article  PubMed  CAS  Google Scholar 

  47. Katagiri, Y. U., Sleeman, J., Fujii, H., Herrlich, P., Hotta, H., Tanaka, K., et al. (1999). CD44 variants but not CD44s cooperate with beta1-containing integrins to permit cells to bind to osteopontin independently of arginine-glycine-aspartic acid, thereby stimulating cell motility and chemotaxis. Cancer Research, 59(1), 219–226.

    PubMed  CAS  Google Scholar 

  48. Trueblood, N. A., Xie, Z., Communal, C., Sam, F., Ngoy, S., Liaw, L., et al. (2001). Exaggerated left ventricular dilation and reduced collagen deposition after myocardial infarction in mice lacking osteopontin. Circulation Research, 88(10), 1080–1087.

    Article  PubMed  CAS  Google Scholar 

  49. Okyay, K., Tavil, Y., Sahinarslan, A., Tacoy, G., Turfan, M., Sen, N., et al. (2011). Plasma osteopontin levels in prediction of prognosis in acute myocardial infarction. Acta Cardiologica, 66(2), 197–202.

    PubMed  Google Scholar 

  50. Dewald, O., Zymek, P., Winkelmann, K., Koerting, A., Ren, G., Abou-Khamis, T., et al. (2005). CCL2/Monocyte Chemoattractant Protein-1 regulates inflammatory responses critical to healing myocardial infarcts. Circulation Research, 96(8), 881–889. doi:10.1161/01.RES.0000163017.13772.3a.

    Article  PubMed  CAS  Google Scholar 

  51. Kusuyama, T., Yoshiyama, M., Omura, T., Nishiya, D., Enomoto, S., Matsumoto, R., et al. (2005). Angiotensin blockade inhibits osteopontin expression in non-infarcted myocardium after myocardial infarction. Journal of Pharmacological Sciences, 98(3), 283–289.

    Article  PubMed  CAS  Google Scholar 

  52. Fujita, N., Fujita, S., Okada, Y., Fujita, K., Kitano, A., Yamanaka, O., et al. (2010). Impaired angiogenic response in the corneas of mice lacking osteopontin. Investigative Ophthalmology and Visual Science, 51(2), 790–794. doi:10.1167/iovs.09-3420.

    Article  PubMed  Google Scholar 

  53. Vetrone, S. A., Montecino-Rodriguez, E., Kudryashova, E., Kramerova, I., Hoffman, E. P., Liu, S. D., et al. (2009). Osteopontin promotes fibrosis in dystrophic mouse muscle by modulating immune cell subsets and intramuscular TGF-beta. Journal of Clinical Investigation, 119(6), 1583–1594. doi:10.1172/JCI37662.

    Article  PubMed  CAS  Google Scholar 

  54. Ashizawa, N., Graf, K., Do, Y. S., Nunohiro, T., Giachelli, C. M., Meehan, W. P., et al. (1996). Osteopontin is produced by rat cardiac fibroblasts and mediates A(II)-induced DNA synthesis and collagen gel contraction. Journal of Clinical Investigation, 98(10), 2218–2227. doi:10.1172/JCI119031.

    Article  PubMed  CAS  Google Scholar 

  55. Lenga, Y., Koh, A., Perera, A. S., McCulloch, C. A., Sodek, J., & Zohar, R. (2008). Osteopontin expression is required for myofibroblast differentiation. Circulation Research, 102(3), 319–327. doi:10.1161/CIRCRESAHA.107.160408.

    Article  PubMed  CAS  Google Scholar 

  56. Zohar, R., Zhu, B., Liu, P., Sodek, J., & McCulloch, C. A. (2004). Increased cell death in osteopontin-deficient cardiac fibroblasts occurs by a caspase-3-independent pathway. American Journal of Physiology - Heart and Circulatory Physiology, 287(4), H1730–1739. doi:10.1152/ajpheart.00098.2004.

    Article  PubMed  CAS  Google Scholar 

  57. Litvin, J., Zhu, S., Norris, R., & Markwald, R. (2005). Periostin family of proteins: therapeutic targets for heart disease. The Anatomical Record. Part A, Discoveries in Molecular, Cellular, and Evolutionary Biology, 287(2), 1205–1212. doi:10.1002/ar.a.20237.

    Article  PubMed  Google Scholar 

  58. Kii, I., & Kudo, A. (2007). Periostin function in the periodontal ligament and the periosteum. Clinical Calcium, 17(2), 202–208. doi:CliCa0702202208.

    PubMed  Google Scholar 

  59. Oka, T., Xu, J., Kaiser, R. A., Melendez, J., Hambleton, M., Sargent, M. A., et al. (2007). Genetic manipulation of periostin expression reveals a role in cardiac hypertrophy and ventricular remodeling. Circulation Research, 101(3), 313–321. doi:10.1161/CIRCRESAHA.107.149047.

    Article  PubMed  CAS  Google Scholar 

  60. Norris, R. A., Damon, B., Mironov, V., Kasyanov, V., Ramamurthi, A., Moreno-Rodriguez, R., et al. (2007). Periostin regulates collagen fibrillogenesis and the biomechanical properties of connective tissues. Journal of Cellular Biochemistry, 101(3), 695–711. doi:10.1002/jcb.21224.

    Article  PubMed  CAS  Google Scholar 

  61. Shimazaki, M., Nakamura, K., Kii, I., Kashima, T., Amizuka, N., Li, M., et al. (2008). Periostin is essential for cardiac healing after acute myocardial infarction. The Journal of Experimental Medicine, 205(2), 295–303. doi:10.1084/jem.20071297.

    Article  PubMed  CAS  Google Scholar 

  62. Kuhn, B., del Monte, F., Hajjar, R. J., Chang, Y. S., Lebeche, D., Arab, S., et al. (2007). Periostin induces proliferation of differentiated cardiomyocytes and promotes cardiac repair. Nature Medicine, 13(8), 962–969. doi:10.1038/nm1619.

    Article  PubMed  Google Scholar 

  63. McCurdy, S. M., Dai, Q., Zhang, J., Zamilpa, R., Ramirez, T. A., Dayah, T., et al. (2011). SPARC mediates early extracellular matrix remodeling following myocardial infarction. American Journal of Physiology - Heart and Circulatory Physiology, 301(2), H497–505. doi:10.1152/ajpheart.01070.2010.

    Article  PubMed  CAS  Google Scholar 

  64. McCurdy, S., Baicu, C. F., Heymans, S., & Bradshaw, A. D. (2010). Cardiac extracellular matrix remodeling: fibrillar collagens and Secreted Protein Acidic and Rich in Cysteine (SPARC). Journal of Molecular and Cellular Cardiology, 48(3), 544–549. doi:10.1016/j.yjmcc.2009.06.018.

    Article  PubMed  CAS  Google Scholar 

  65. Komatsubara, I., Murakami, T., Kusachi, S., Nakamura, K., Hirohata, S., Hayashi, J., et al. (2003). Spatially and temporally different expression of osteonectin and osteopontin in the infarct zone of experimentally induced myocardial infarction in rats. Cardiovascular Pathology, 12(4), 186–194.

    Article  PubMed  CAS  Google Scholar 

  66. Jugdutt, B. I., Palaniyappan, A., Uwiera, R. R., & Idikio, H. (2009). Role of healing-specific-matricellular proteins and matrix metalloproteinases in age-related enhanced early remodeling after reperfused STEMI in dogs. Molecular and Cellular Biochemistry, 322(1–2), 25–36. doi:10.1007/s11010-008-9936-9.

    Article  PubMed  CAS  Google Scholar 

  67. Schellings, M. W., Vanhoutte, D., Swinnen, M., Cleutjens, J. P., Debets, J., van Leeuwen, R. E., et al. (2009). Absence of SPARC results in increased cardiac rupture and dysfunction after acute myocardial infarction. The Journal of Experimental Medicine, 206(1), 113–123. doi:10.1084/jem.20081244.

    Article  PubMed  CAS  Google Scholar 

  68. Murphy-Ullrich, J. E. (2001). The de-adhesive activity of matricellular proteins: is intermediate cell adhesion an adaptive state? Journal of Clinical Investigation, 107(7), 785–790. doi:10.1172/JCI12609.

    Article  PubMed  CAS  Google Scholar 

  69. Sato, I., & Shimada, K. (2001). Quantitative analysis of tenascin in chordae tendineae of human left ventricular papillary muscle with aging. Annals of Anatomy, 183(5), 443–448.

    Article  PubMed  CAS  Google Scholar 

  70. Imanaka-Yoshida, K., Hiroe, M., Nishikawa, T., Ishiyama, S., Shimojo, T., Ohta, Y., et al. (2001). Tenascin-C modulates adhesion of cardiomyocytes to extracellular matrix during tissue remodeling after myocardial infarction. Laboratory Investigation, 81(7), 1015–1024.

    Article  PubMed  CAS  Google Scholar 

  71. Nishioka, T., Onishi, K., Shimojo, N., Nagano, Y., Matsusaka, H., Ikeuchi, M., et al. (2010). Tenascin-C may aggravate left ventricular remodeling and function after myocardial infarction in mice. American Journal of Physiology - Heart and Circulatory Physiology, 298(3), H1072–1078. doi:10.1152/ajpheart.00255.2009.

    Article  PubMed  CAS  Google Scholar 

  72. Tamaoki, M., Imanaka-Yoshida, K., Yokoyama, K., Nishioka, T., Inada, H., Hiroe, M., et al. (2005). Tenascin-C regulates recruitment of myofibroblasts during tissue repair after myocardial injury. American Journal of Pathology, 167(1), 71–80. doi:10.1016/S0002-9440(10)62954-9.

    Article  PubMed  CAS  Google Scholar 

  73. Sato, A., Aonuma, K., Imanaka-Yoshida, K., Yoshida, T., Isobe, M., Kawase, D., et al. (2006). Serum tenascin-C might be a novel predictor of left ventricular remodeling and prognosis after acute myocardial infarction. Journal of the American College of Cardiology, 47(11), 2319–2325. doi:10.1016/j.jacc.2006.03.033.

    Article  PubMed  CAS  Google Scholar 

  74. Carlson, C. B., Lawler, J., & Mosher, D. F. (2008). Structures of thrombospondins. Cellular and Molecular Life Sciences, 65(5), 672–686. doi:10.1007/s00018-007-7484-1.

    Article  PubMed  CAS  Google Scholar 

  75. Frangogiannis, N. G., Ren, G., Dewald, O., Zymek, P., Haudek, S., Koerting, A., et al. (2005). Critical role of endogenous thrombospondin-1 in preventing expansion of healing myocardial infarcts. Circulation, 111(22), 2935–2942. doi:10.1161/CIRCULATIONAHA.104.510354.

    Article  PubMed  CAS  Google Scholar 

  76. Jimenez, B., Volpert, O. V., Crawford, S. E., Febbraio, M., Silverstein, R. L., & Bouck, N. (2000). Signals leading to apoptosis-dependent inhibition of neovascularization by thrombospondin-1. Nature Medicine, 6(1), 41–48. doi:10.1038/71517.

    Article  PubMed  CAS  Google Scholar 

  77. Schroen, B., Heymans, S., Sharma, U., Blankesteijn, W. M., Pokharel, S., Cleutjens, J. P., et al. (2004). Thrombospondin-2 is essential for myocardial matrix integrity: increased expression identifies failure-prone cardiac hypertrophy. Circulation Research, 95(5), 515–522. doi:10.1161/01.RES.0000141019.20332.3e.

    Article  PubMed  CAS  Google Scholar 

  78. Rysa, J., Leskinen, H., Ilves, M., & Ruskoaho, H. (2005). Distinct upregulation of extracellular matrix genes in transition from hypertrophy to hypertensive heart failure. Hypertension, 45(5), 927–933. doi:10.1161/01.HYP.0000161873.27088.4c.

    Article  PubMed  Google Scholar 

  79. Davis, G. E., Bayless, K. J., Davis, M. J., & Meininger, G. A. (2000). Regulation of tissue injury responses by the exposure of matricryptic sites within extracellular matrix molecules. American Journal of Pathology, 156(5), 1489–1498. doi:10.1016/S0002-9440(10)65020-1.

    Article  PubMed  CAS  Google Scholar 

  80. Hamano, Y., Zeisberg, M., Sugimoto, H., Lively, J. C., Maeshima, Y., Yang, C., et al. (2003). Physiological levels of tumstatin, a fragment of collagen IV alpha3 chain, are generated by MMP-9 proteolysis and suppress angiogenesis via alphaV beta3 integrin. Cancer Cell, 3(6), 589–601.

    Article  PubMed  CAS  Google Scholar 

  81. Lin, H. C., Chang, J. H., Jain, S., Gabison, E. E., Kure, T., Kato, T., et al. (2001). Matrilysin cleavage of corneal collagen type XVIII NC1 domain and generation of a 28-kDa fragment. Investigative Ophthalmology and Visual Science, 42(11), 2517–2524.

    PubMed  CAS  Google Scholar 

  82. Chang, J. H., Javier, J. A., Chang, G. Y., Oliveira, H. B., & Azar, D. T. (2005). Functional characterization of neostatins, the MMP-derived, enzymatic cleavage products of type XVIII collagen. FEBS Letters, 579(17), 3601–3606. doi:10.1016/j.febslet.2005.05.043.

    Article  PubMed  CAS  Google Scholar 

  83. Wahl, M. L., Kenan, D. J., Gonzalez-Gronow, M., & Pizzo, S. V. (2005). Angiostatin’s molecular mechanism: aspects of specificity and regulation elucidated. Journal of Cellular Biochemistry, 96(2), 242–261. doi:10.1002/jcb.20480.

    Article  PubMed  CAS  Google Scholar 

  84. Kalluri, R., Cantley, L. G., Kerjaschki, D., & Neilson, E. G. (2000). Reactive oxygen species expose cryptic epitopes associated with autoimmune goodpasture syndrome. Journal of Biological Chemistry, 275(26), 20027–20032. doi:10.1074/jbc.M904549199.

    Article  PubMed  CAS  Google Scholar 

  85. Nyberg, P., Xie, L., & Kalluri, R. (2005). Endogenous inhibitors of angiogenesis. Cancer Research, 65(10), 3967–3979. doi:10.1158/0008-5472.CAN-04-2427.

    Article  PubMed  CAS  Google Scholar 

  86. Mundel, T. M., & Kalluri, R. (2007). Type IV collagen-derived angiogenesis inhibitors. Microvascular Research, 74(2–3), 85–89. doi:10.1016/j.mvr.2007.05.005.

    Article  PubMed  CAS  Google Scholar 

  87. Hangai, M., Kitaya, N., Xu, J., Chan, C. K., Kim, J. J., Werb, Z., et al. (2002). Matrix metalloproteinase-9-dependent exposure of a cryptic migratory control site in collagen is required before retinal angiogenesis. American Journal of Pathology, 161(4), 1429–1437. doi:10.1016/S0002-9440(10)64418-5.

    Article  PubMed  CAS  Google Scholar 

  88. Stern, R., Asari, A. A., & Sugahara, K. N. (2006). Hyaluronan fragments: an information-rich system. European Journal of Cell Biology, 85(8), 699–715. doi:10.1016/j.ejcb.2006.05.009.

    Article  PubMed  CAS  Google Scholar 

  89. Chang, C., & Werb, Z. (2001). The many faces of metalloproteases: cell growth, invasion, angiogenesis and metastasis. Trends in Cell Biology, 11(11), S37–43.

    Article  PubMed  CAS  Google Scholar 

  90. Adair-Kirk, T. L., & Senior, R. M. (2008). Fragments of extracellular matrix as mediators of inflammation. The International Journal of Biochemistry & Cell Biology, 40(6–7), 1101–1110. doi:10.1016/j.biocel.2007.12.005.

    Article  CAS  Google Scholar 

  91. Isobe, K., Kuba, K., Maejima, Y., Suzuki, J., Kubota, S., & Isobe, M. (2010). Inhibition of endostatin/collagen XVIII deteriorates left ventricular remodeling and heart failure in rat myocardial infarction model. Circulation Journal, 74(1), 109–119.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We acknowledge support from NIH-National Center for Complementary and Alternative Medicine for 1K99AT006704-01 to GVH; and from NIH/NHLBI HHSN 268201000036C (N01-HV-00244) for the San Antonio Cardiovascular Proteomics Center and R01 HL075360, the Max and Minnie Tomerlin Voelcker Fund, and the Veteran’s Administration (Merit) to MLL.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Merry L. Lindsey.

Additional information

Statement of Clinical Relevance

Myocardial infarction (MI) is a leading cause in morbidity and mortality worldwide. Although 1-month survival rates have dramatically improved over the past 30 years, the number of patients that progress to congestive heart failure has increased and the 5-year survival rates for heart failure remain approximately 50 %. Additional therapeutic approaches that can delay, limit, or reverse adverse remodeling, therefore, are needed.

Following MI, a reparative scar predominantly containing collagen is formed to replace necrotic myocytes. The balance between extracellular matrix (ECM) synthesis and degradation is critical for stable scar repair. Excessive ECM deposition increases wall stiffness and diastolic dysfunction, while insufficient ECM accumulation and impaired collagen cross-linking contribute to progressive infarct wall thinning and dilation of the left ventricle chamber. In this review, we summarize the current understanding of the roles of different ECM molecules in the MI setting. A better understanding of how individual ECM molecules regulate the post-MI remodeling response is needed, to identify promising intervention targets to stimulate an optimal infarct healing response.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ma, Y., Halade, G.V. & Lindsey, M.L. Extracellular Matrix and Fibroblast Communication Following Myocardial Infarction. J. of Cardiovasc. Trans. Res. 5, 848–857 (2012). https://doi.org/10.1007/s12265-012-9398-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12265-012-9398-z

Keywords

Navigation