Skip to main content

Fibroblast Activation in the Infarcted Myocardium

  • Chapter
  • First Online:
Cardiac Fibrosis and Heart Failure: Cause or Effect?

Part of the book series: Advances in Biochemistry in Health and Disease ((ABHD,volume 13))

Abstract

The adult mammalian heart contains abundant fibroblasts. Cardiac fibroblasts are versatile and dynamic cells that not only produce extracellular matrix proteins, but may also serve important functions in myocardial inflammation, angiogenesis and repair. Following injury, cardiac fibroblasts may maintain the integrity of the extracellular matrix network preserving cardiac geometry and function. Myocardial infarction induces dynamic alterations in fibroblast phenotype. During the early stages of infarct healing, cardiac fibroblasts may serve as sentinel cells that sense signals released by dying cardiomyocytes and activate the inflammasome, secreting cytokines and chemokines. During the inflammatory phase, fibroblasts exhibit a matrix-degrading phenotype; myofibroblast conversion may be delayed by activation of Interleukin-1 (IL-1) signaling. Suppression of pro-inflammatory signals and termination of IL-1-driven cascades during the proliferative phase of infarct healing may allow unopposed actions of Transforming Growth Factor (TGF)-β on cardiac fibroblasts, mediating myofibroblast transdifferentiation, matrix synthesis and scar contraction. Angiotensin II, the mast cell proteases chymase and tryptase, growth factors and specialized matrix proteins may co-operate to promote a synthetic and proliferative myofibroblast phenotype. The maturation phase follows, as infarct myofibroblasts cross-link the surrounding matrix, become quiescent and may undergo apoptosis. However, in the non-infarcted remodeling myocardium, fibroblasts may remain activated in response to volume and pressure overload promoting interstitial fibrosis. This chapter discusses the role of cardiac fibroblasts in infarct healing and the mechanisms of their activation, suggesting potential therapeutic targets aimed at attenuating adverse post-infarction remodeling.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Souders CA, Bowers SL, Baudino TA (2009) Cardiac fibroblast: the renaissance cell. Circ Res. 105:1164–1176.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  2. Camelliti P, Borg TK, Kohl P (2005) Structural and functional characterisation of cardiac fibroblasts. Cardiovasc Res 65:40–51.

    Article  CAS  PubMed  Google Scholar 

  3. Bowers SL, Baudino TA (2012) Cardiac myocyte-fibroblast interactions and the coronary vasculature. J Cardiovasc Transl Res 5:783–793.

    Article  PubMed  Google Scholar 

  4. Smith RS, Smith TJ, Blieden TM, Phipps RP (1997) Fibroblasts as sentinel cells. Synthesis of chemokines and regulation of inflammation. Am J Pathol 151:317–322.

    CAS  PubMed Central  PubMed  Google Scholar 

  5. Buckley CD, Pilling D, Lord JM, Akbar AN, Scheel-Toellner D, Salmon M (2001) Fibroblasts regulate the switch from acute resolving to chronic persistent inflammation. Trends Immunol 22:199–204.

    Article  CAS  PubMed  Google Scholar 

  6. Shinde AV, Frangogiannis NG (2014) Fibroblasts in myocardial infarction: A role in inflammation and repair. J Mol Cell Cardiol 70 C:74–82.

    Google Scholar 

  7. Chen W, Frangogiannis NG (2013) Fibroblasts in post-infarction inflammation and cardiac repair. Biochim Biophys Acta 1833:945–953.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  8. Frangogiannis NG (2012) Regulation of the inflammatory response in cardiac repair. Circ Res 110:159–173.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  9. Frangogiannis NG (2013) The immune system and the remodeling infarcted heart: cell biological insights and therapeutic opportunities. J Cardiovasc Pharmacol

    Google Scholar 

  10. Nag AC (1980) Study of non-muscle cells of the adult mammalian heart: a fine structural analysis and distribution. Cytobios 28:41–61.

    CAS  PubMed  Google Scholar 

  11. Speiser B, Weihrauch D, Riess CF, Schaper J (1992) The extracellular matrix in human cardiac tissue. Part II: Vimentin, laminin, and fibronectin. Cardioscience 3:41–49.

    CAS  PubMed  Google Scholar 

  12. Frangogiannis NG, Michael LH, Entman ML (2000) Myofibroblasts in reperfused myocardial infarcts express the embryonic form of smooth muscle myosin heavy chain (SMemb). Cardiovasc Res 48:89–100.

    Article  CAS  PubMed  Google Scholar 

  13. Kong P, Christia P, Saxena A, Su Y, Frangogiannis NG (2013) Lack of specificity of fibroblast-specific protein 1 in cardiac remodeling and fibrosis. Am J Physiol Heart Circ Physiol 305:H1363–1372.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  14. Li ZH, Dulyaninova NG, House RP, Almo SC, Bresnick AR (2010) S100A4 regulates macrophage chemotaxis. Mol Biol Cell 21:2598–2610.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  15. Acharya A, Baek ST, Huang G, Eskiocak B, Goetsch S, Sung CY, Banfi S, Sauer MF, Olsen GS, Duffield JS, Olson EN, Tallquist MD (2012) The bHLH transcription factor Tcf21 is required for lineage-specific EMT of cardiac fibroblast progenitors. Development 139:2139–2149.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  16. Braitsch CM, Kanisicak O, van Berlo JH, Molkentin JD, Yutzey KE (2013) Differential expression of embryonic epicardial progenitor markers and localization of cardiac fibrosis in adult ischemic injury and hypertensive heart disease. J Mol Cell Cardiol 65:108–119.

    Article  CAS  PubMed  Google Scholar 

  17. Ieda M, Tsuchihashi T, Ivey KN, Ross RS, Hong TT, Shaw RM, Srivastava D (2009) Cardiac fibroblasts regulate myocardial proliferation through beta1 integrin signaling. Dev Cell 16:233–244.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  18. Camelliti P, Green CR, LeGrice I, Kohl P (2004) Fibroblast network in rabbit sinoatrial node: structural and functional identification of homogeneous and heterogeneous cell coupling. Circ Res 94:828–835.

    Article  CAS  PubMed  Google Scholar 

  19. Zhang X, Azhar G, Nagano K, Wei JY (2001) Differential vulnerability to oxidative stress in rat cardiac myocytes versus fibroblasts. J Am Coll Cardiol 38:2055–2062.

    Article  CAS  PubMed  Google Scholar 

  20. Kawaguchi M, Takahashi M, Hata T, Kashima Y, Usui F, Morimoto H, Izawa A, Takahashi Y, Masumoto J, Koyama J, Hongo M, Noda T, Nakayama J, Sagara J, Taniguchi S, Ikeda U (2011) Inflammasome activation of cardiac fibroblasts is essential for myocardial ischemia/reperfusion injury. Circulation 123:594–604.

    Article  CAS  PubMed  Google Scholar 

  21. Turner NA, Das A, Warburton P, O’Regan DJ, Ball SG, Porter KE (2009) Interleukin-1alpha stimulates proinflammatory cytokine expression in human cardiac myofibroblasts. Am J Physiol Heart Circ Physiol 297:H1117–1127.

    Article  CAS  PubMed  Google Scholar 

  22. Lafontant PJ, Burns AR, Donnachie E, Haudek SB, Smith CW, Entman ML (2006) Oncostatin M differentially regulates CXC chemokines in mouse cardiac fibroblasts. Am J Physiol Cell Physiol 291:C18–26.

    Article  CAS  PubMed  Google Scholar 

  23. Zymek P, Nah DY, Bujak M, Ren G, Koerting A, Leucker T, Huebener P, Taffet G, Entman M, Frangogiannis NG (2007) Interleukin-10 is not a critical regulator of infarct healing and left ventricular remodeling. Cardiovasc Res 74:313–322.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  24. Saxena A, Chen W, Su Y, Rai V, Uche OU, Li N, Frangogiannis NG (2013) IL-1 Induces Proinflammatory Leukocyte Infiltration and Regulates Fibroblast Phenotype in the Infarcted Myocardium. J Immunol 191:4838–4848.

    Article  CAS  PubMed  Google Scholar 

  25. Palmer JN, Hartogensis WE, Patten M, Fortuin FD, Long CS (1995) Interleukin-1 beta induces cardiac myocyte growth but inhibits cardiac fibroblast proliferation in culture. J Clin Invest 95:2555–2564.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  26. Koudssi F, Lopez JE, Villegas S, Long CS (1998) Cardiac fibroblasts arrest at the G1/S restriction point in response to interleukin (IL)-1beta. Evidence for IL-1beta-induced hypophosphorylation of the retinoblastoma protein. J Biol Chem 273:25796–25803.

    Article  CAS  PubMed  Google Scholar 

  27. Sano M, Fukuda K, Sato T, Kawaguchi H, Suematsu M, Matsuda S, Koyasu S, Matsui H, Yamauchi-Takihara K, Harada M, Saito Y, Ogawa S (2001) ERK and p38 MAPK, but not NF-kappaB, are critically involved in reactive oxygen species-mediated induction of IL-6 by angiotensin II in cardiac fibroblasts. Circ Res 89:661–669.

    Article  CAS  PubMed  Google Scholar 

  28. Rude MK, Duhaney TA, Kuster GM, Judge S, Heo J, Colucci WS, Siwik DA, Sam F (2005) Aldosterone stimulates matrix metalloproteinases and reactive oxygen species in adult rat ventricular cardiomyocytes. Hypertension 46:555–561.

    Article  CAS  PubMed  Google Scholar 

  29. Huebener P, Abou-Khamis T, Zymek P, Bujak M, Ying X, Chatila K, Haudek S, Thakker G, Frangogiannis NG (2008) CD44 Is Critically Involved in Infarct Healing by Regulating the Inflammatory and Fibrotic Response. J Immunol 180:2625–2633.

    Article  CAS  PubMed  Google Scholar 

  30. Cleutjens JP, Kandala JC, Guarda E, Guntaka RV, Weber KT (1995) Regulation of collagen degradation in the rat myocardium after infarction. J Mol Cell Cardiol 27:1281–1292.

    Article  CAS  PubMed  Google Scholar 

  31. Pierer M, Rethage J, Seibl R, Lauener R, Brentano F, Wagner U, Hantzschel H, Michel BA, Gay RE, Gay S, Kyburz D (2004) Chemokine secretion of rheumatoid arthritis synovial fibroblasts stimulated by Toll-like receptor 2 ligands. J Immunol 172:1256–1265.

    Article  CAS  PubMed  Google Scholar 

  32. Chen W, Saxena A, Li N, Sun J, Gupta A, Lee DW, Tian Q, Dobaczewski M, Frangogiannis NG (2012) Endogenous IRAK-M attenuates postinfarction remodeling through effects on macrophages and fibroblasts. Arterioscler Thromb Vasc Biol 32:2598–2608.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  33. Dobaczewski M, Xia Y, Bujak M, Gonzalez-Quesada C, Frangogiannis NG (2010) CCR5 signaling suppresses inflammation and reduces adverse remodeling of the infarcted heart, mediating recruitment of regulatory T cells. Am J Pathol 176:2177–2187.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  34. Weirather J, Hofmann U, Beyersdorf N, Ramos GC, Vogel B, Frey A, Ertl G, Kerkau T, Frantz S.(2014) Foxp3 + CD4 + T Cells Improve Healing after Myocardial Infarction by Modulating Monocyte/Macrophage Differentiation. Circ Res

    Google Scholar 

  35. Nahrendorf M, Swirski FK, Aikawa E, Stangenberg L, Wurdinger T, Figueiredo JL, Libby P, Weissleder R, Pittet MJ (2007) The healing myocardium sequentially mobilizes two monocyte subsets with divergent and complementary functions. J Exp Med 204:3037–3047.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  36. Haudek SB, Xia Y, Huebener P, Lee JM, Carlson S, Crawford JR, Pilling D, Gomer RH, Trial J, Frangogiannis NG, Entman ML (2006) Bone marrow-derived fibroblast precursors mediate ischemic cardiomyopathy in mice. Proc Natl Acad Sci U S A 103:18284–18289.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  37. Zeisberg EM, Tarnavski O, Zeisberg M, Dorfman AL, McMullen JR, Gustafsson E, Chandraker A, Yuan X, Pu WT, Roberts AB, Neilson EG, Sayegh MH, Izumo S, Kalluri R (2007) Endothelial-to-mesenchymal transition contributes to cardiac fibrosis. Nat Med 13:952–961.

    Article  CAS  PubMed  Google Scholar 

  38. Mollmann H, Nef HM, Kostin S, von Kalle C, Pilz I, Weber M, Schaper J, Hamm CW, Elsasser A (2006) Bone marrow-derived cells contribute to infarct remodelling. Cardiovasc Res 71:661–671.

    Article  PubMed  Google Scholar 

  39. Gabbiani G (2003) The myofibroblast in wound healing and fibrocontractive diseases. J Pathol. 200:500–503.

    Article  CAS  PubMed  Google Scholar 

  40. Willems IE, Havenith MG, De Mey JG, Daemen MJ (1994) The alpha-smooth muscle actin-positive cells in healing human myocardial scars. Am J Pathol 145:868–875.

    CAS  PubMed Central  PubMed  Google Scholar 

  41. Hinz B (2007) Formation and function of the myofibroblast during tissue repair. J Invest Dermatol 127:526–537.

    Article  CAS  PubMed  Google Scholar 

  42. Hinz B (2010) The myofibroblast: paradigm for a mechanically active cell. J Biomech 43:146–155.

    Article  PubMed  Google Scholar 

  43. Serini G, Bochaton-Piallat ML, Ropraz P, Geinoz A, Borsi L, Zardi L, Gabbiani G (1998) The fibronectin domain ED-A is crucial for myofibroblastic phenotype induction by transforming growth factor-beta1. J Cell Biol 142:873–881.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  44. Biernacka A, Dobaczewski M, Frangogiannis NG (2011) TGF-beta signaling in fibrosis. Growth Factors 29:196–202.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  45. Davis J, Burr AR, Davis GF, Birnbaumer L, Molkentin JD (2012) A TRPC6-dependent pathway for myofibroblast transdifferentiation and wound healing in vivo. Dev Cell 23:705–715.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  46. Davis J, Molkentin JD (2013) Myofibroblasts: Trust your heart and let fate decide. J Mol Cell Cardiol

    Google Scholar 

  47. Frangogiannis NG (2012) Matricellular proteins in cardiac adaptation and disease. Physiol Rev 92:635–688.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  48. Dewald O, Ren G, Duerr GD, Zoerlein M, Klemm C, Gersch C, Tincey S, Michael LH, Entman ML, Frangogiannis NG (2004) Of mice and dogs: species-specific differences in the inflammatory response following myocardial infarction. Am J Pathol 164:665–677.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  49. Hao J, Ju H, Zhao S, Junaid A, Scammell-La Fleur T, Dixon IM (1999) Elevation of expression of Smads 2, 3, and 4, decorin and TGF-beta in the chronic phase of myocardial infarct scar healing. J Mol Cell Cardiol 31:667–678.

    Article  CAS  PubMed  Google Scholar 

  50. Bujak M, Ren G, Kweon HJ, Dobaczewski M, Reddy A, Taffet G, Wang XF, Frangogiannis NG (2007) Essential role of Smad3 in infarct healing and in the pathogenesis of cardiac remodeling. Circulation 116:2127–2138.

    Article  CAS  PubMed  Google Scholar 

  51. Leask A, Abraham DJ (2004) TGF-beta signaling and the fibrotic response. FASEB J 18:816–827.

    Article  CAS  PubMed  Google Scholar 

  52. Dobaczewski M, Bujak M, Li N, Gonzalez-Quesada C, Mendoza LH, Wang XF, Frangogiannis NG (2010) Smad3 signaling critically regulates fibroblast phenotype and function in healing myocardial infarction. Circ Res 107:418–428.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  53. Ma FY, Sachchithananthan M, Flanc RS, Nikolic-Paterson DJ (2009) Mitogen activated protein kinases in renal fibrosis. Front Biosci (Schol Ed) 1:171–187.

    Article  Google Scholar 

  54. Wang S, Wilkes MC, Leof EB, Hirschberg R (2010) Noncanonical TGF-beta pathways, mTORC1 and Abl, in renal interstitial fibrogenesis. Am J Physiol Renal Physiol 298:F142–149.

    Google Scholar 

  55. Zhang D, Gaussin V, Taffet GE, Belaguli NS, Yamada M, Schwartz RJ, Michael LH, Overbeek PA, Schneider MD (2000) TAK1 is activated in the myocardium after pressure overload and is sufficient to provoke heart failure in transgenic mice. Nat Med 6:556–563.

    Article  CAS  PubMed  Google Scholar 

  56. Blankesteijn WM, Essers-Janssen YP, Verluyten MJ, Daemen MJ, Smits JF (1997) A homologue of Drosophila tissue polarity gene frizzled is expressed in migrating myofibroblasts in the infarcted rat heart. Nat Med 3:541–544.

    Article  CAS  PubMed  Google Scholar 

  57. Bujak M, Dobaczewski M, Gonzalez-Quesada C, Xia Y, Leucker T, Zymek P, Veeranna V, Tager AM, Luster AD, Frangogiannis NG (2009) Induction of the CXC chemokine interferon-gamma-inducible protein 10 regulates the reparative response following myocardial infarction. Circ Res 105:973–983.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  58. Saxena A, Bujak M, Frunza O, Dobaczewski M, Gonzalez-Quesada C, Lu B, Gerard C, Frangogiannis NG (2014) CXCR3-independent actions of the CXC chemokine CXCL10 in the infarcted myocardium and in isolated cardiac fibroblasts are mediated through proteoglycans. Cardiovasc Res

    Google Scholar 

  59. Frangogiannis NG, Perrard JL, Mendoza LH, Burns AR, Lindsey ML, Ballantyne CM, Michael LH, Smith CW, Entman ML (1998) Stem cell factor induction is associated with mast cell accumulation after canine myocardial ischemia and reperfusion. Circulation 98:687–698.

    Article  CAS  PubMed  Google Scholar 

  60. Frangogiannis NG, Dewald O, Xia Y, Ren G, Haudek S, Leucker T, Kraemer D, Taffet G, Rollins BJ, Entman ML (2007) Critical role of monocyte chemoattractant protein-1/CC chemokine ligand 2 in the pathogenesis of ischemic cardiomyopathy. Circulation 115:584–592.

    Article  CAS  PubMed  Google Scholar 

  61. Sun Y, Weber KT (2000) Infarct scar: a dynamic tissue. Cardiovasc Res 46:250–256.

    Article  CAS  PubMed  Google Scholar 

  62. Weber KT, Sun Y, Tyagi SC, Cleutjens JP (1994) Collagen network of the myocardium: function, structural remodeling and regulatory mechanisms. J Mol Cell Cardiol 26:279–292.

    Article  CAS  PubMed  Google Scholar 

  63. Detillieux KA, Sheikh F, Kardami E, Cattini PA (2003) Biological activities of fibroblast growth factor-2 in the adult myocardium. Cardiovasc Res 57:8–19.

    Article  CAS  PubMed  Google Scholar 

  64. Zymek P, Bujak M, Chatila K, Cieslak A, Thakker G, Entman ML, Frangogiannis NG (2006) The role of platelet-derived growth factor signaling in healing myocardial infarcts. J Am Coll Cardiol 48:2315–2323.

    Article  CAS  PubMed  Google Scholar 

  65. Hafizi S, Wharton J, Chester AH, Yacoub MH (2004) Profibrotic effects of endothelin-1 via the ETA receptor in cultured human cardiac fibroblasts. Cell Physiol Biochem 14:285–292.

    Article  CAS  PubMed  Google Scholar 

  66. Piacentini L, Gray M, Honbo NY, Chentoufi J, Bergman M, Karliner JS (2000) Endothelin-1 stimulates cardiac fibroblast proliferation through activation of protein kinase C. J Mol Cell Cardiol 32:565–576.

    Article  CAS  PubMed  Google Scholar 

  67. Cairns JA, Walls AF (1997) Mast cell tryptase stimulates the synthesis of type I collagen in human lung fibroblasts. J Clin Invest 99:1313–1321.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  68. Ruoss SJ, Hartmann T, Caughey GH (1991) Mast cell tryptase is a mitogen for cultured fibroblasts. J Clin Invest 88:493–499.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  69. Zhao XY, Zhao LY, Zheng QS, Su JL, Guan H, Shang FJ, Niu XL, He YP, Lu XL (2008) Chymase induces profibrotic response via transforming growth factor-beta 1/Smad activation in rat cardiac fibroblasts. Mol Cell Biochem 310:159–166.

    Article  CAS  PubMed  Google Scholar 

  70. Dell’Italia LJ, Husain A (2002) Dissecting the role of chymase in angiotensin II formation and heart and blood vessel diseases. Curr Opin Cardiol 17:374–379.

    Article  PubMed  Google Scholar 

  71. Adams JC, Lawler J (2004) The thrombospondins. Int J Biochem Cell Biol 36:961–968.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  72. Frangogiannis NG, Ren G, Dewald O, Zymek P, Haudek S, Koerting A, Winkelmann K, Michael LH, Lawler J, Entman ML (2005) The critical role of endogenous Thrombospondin (TSP)-1 in preventing expansion of healing myocardial infarcts. Circulation 111:2935–2942.

    Article  CAS  PubMed  Google Scholar 

  73. Xia Y, Dobaczewski M, Gonzalez-Quesada C, Chen W, Biernacka A, Li N, Lee DW, Frangogiannis NG (2011) Endogenous thrombospondin 1 protects the pressure-overloaded myocardium by modulating fibroblast phenotype and matrix metabolism. Hypertension 58:902–911.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  74. Willems IE, Arends JW, Daemen MJ (1996) Tenascin and fibronectin expression in healing human myocardial scars. J Pathol 179:321–325.

    Article  CAS  PubMed  Google Scholar 

  75. Tamaoki M, Imanaka-Yoshida K, Yokoyama K, Nishioka T, Inada H, Hiroe M, Sakakura T, Yoshida T (2005) Tenascin-C regulates recruitment of myofibroblasts during tissue repair after myocardial injury. Am J Pathol 167:71–80.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  76. Imanaka-Yoshida K (2012) Tenascin-C in cardiovascular tissue remodeling: from development to inflammation and repair. Circ J 76:2513–2520.

    Article  CAS  PubMed  Google Scholar 

  77. Schellings MW, Vanhoutte D, Swinnen M, Cleutjens JP, Debets J, van Leeuwen RE, d’Hooge J, Van de Werf F, Carmeliet P, Pinto YM, Sage EH, Heymans S (2009) Absence of SPARC results in increased cardiac rupture and dysfunction after acute myocardial infarction. J Exp Med 206:113–123.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  78. Dobaczewski M, de Haan JJ, Frangogiannis NG (2012) The extracellular matrix modulates fibroblast phenotype and function in the infarcted myocardium. J Cardiovasc Transl Res 5:837–847.

    Article  PubMed Central  PubMed  Google Scholar 

  79. Trueblood NA, Xie Z, Communal C, Sam F, Ngoy S, Liaw L, Jenkins AW, Wang J, Sawyer DB, Bing OH, Apstein CS, Colucci WS, Singh K (2001) Exaggerated left ventricular dilation and reduced collagen deposition after myocardial infarction in mice lacking osteopontin. Circ Res 88:1080–1087.

    Article  CAS  PubMed  Google Scholar 

  80. Ashizawa N, Graf K, Do YS, Nunohiro T, Giachelli CM, Meehan WP, Tuan TL, Hsueh WA (1996) Osteopontin is produced by rat cardiac fibroblasts and mediates A(II)-induced DNA synthesis and collagen gel contraction. J Clin Invest 98:2218–2227.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  81. Oka T, Xu J, Kaiser RA, Melendez J, Hambleton M, Sargent MA, Lorts A, Brunskill EW, Dorn GW, 2nd, Conway SJ, Aronow BJ, Robbins J, Molkentin JD (2007) Genetic manipulation of periostin expression reveals a role in cardiac hypertrophy and ventricular remodeling. Circ Res 101:313–321.

    Google Scholar 

  82. Shimazaki M, Nakamura K, Kii I, Kashima T, Amizuka N, Li M, Saito M, Fukuda K, Nishiyama T, Kitajima S, Saga Y, Fukayama M, Sata M, Kudo A (2008) Periostin is essential for cardiac healing after acute myocardial infarction. J Exp Med 205:295–303.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  83. Christia P, Bujak M, Gonzalez-Quesada C, Chen W, Dobaczewski M, Reddy A, Frangogiannis NG (2013) Systematic characterization of myocardial inflammation, repair, and remodeling in a mouse model of reperfused myocardial infarction. J Histochem Cytochem 61:555–570.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  84. Ren G, Michael LH, Entman ML, Frangogiannis NG (2002) Morphological characteristics of the microvasculature in healing myocardial infarcts. J Histochem Cytochem 50:71–79.

    Article  CAS  PubMed  Google Scholar 

  85. Pallero MA, Elzie CA, Chen J, Mosher DF, Murphy-Ullrich JE (2008) Thrombospondin 1 binding to calreticulin-LRP1 signals resistance to anoikis. Faseb J 22:3968–3979.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  86. Xia Y, Lee K, Li N, Corbett D, Mendoza L, Frangogiannis NG (2009) Characterization of the inflammatory and fibrotic response in a mouse model of cardiac pressure overload. Histochem Cell Biol 131:471–481.

    Article  CAS  PubMed  Google Scholar 

  87. Zheng J, Chen Y, Pat B, Dell’italia LA, Tillson M, Dillon AR, Powell PC, Shi K, Shah N, Denney T, Husain A, Dell’Italia LJ (2009) Microarray identifies extensive downregulation of noncollagen extracellular matrix and profibrotic growth factor genes in chronic isolated mitral regurgitation in the dog. Circulation 119:2086–2095.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  88. Brilla CG, Funck RC, Rupp H (2000) Lisinopril-mediated regression of myocardial fibrosis in patients with hypertensive heart disease. Circulation 102:1388–1393.

    Article  CAS  PubMed  Google Scholar 

  89. Hayashi M, Tsutamoto T, Wada A, Tsutsui T, Ishii C, Ohno K, Fujii M, Taniguchi A, Hamatani T, Nozato Y, Kataoka K, Morigami N, Ohnishi M, Kinoshita M, Horie M (2003) Immediate administration of mineralocorticoid receptor antagonist spironolactone prevents post-infarct left ventricular remodeling associated with suppression of a marker of myocardial collagen synthesis in patients with first anterior acute myocardial infarction. Circulation 107:2559–2565.

    Article  CAS  PubMed  Google Scholar 

  90. Frangogiannis NG (2014) The inflammatory response in myocardial injury, repair, and remodelling. Nat Rev Cardiol 11:255–265.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  91. Abbate A, Kontos MC, Grizzard JD, Biondi-Zoccai GG, Van Tassell BW, Robati R, Roach LM, Arena RA, Roberts CS, Varma A, Gelwix CC, Salloum FN, Hastillo A, Dinarello CA, Vetrovec GW (2010) Interleukin-1 blockade with anakinra to prevent adverse cardiac remodeling after acute myocardial infarction (Virginia Commonwealth University Anakinra Remodeling Trial [VCU-ART] Pilot study). Am J Cardiol 105:1371–1377 e1371.

    Article  Google Scholar 

  92. Bujak M, Frangogiannis NG (2007) The role of TGF-beta signaling in myocardial infarction and cardiac remodeling. Cardiovasc Res 74:184–195.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  93. Bujak M, Kweon HJ, Chatila K, Li N, Taffet G, Frangogiannis NG. (2008) Aging-related defects are associated with adverse cardiac remodeling in a mouse model of reperfused myocardial infarction. J Am Coll Cardiol 51:1384–1392.

    Article  PubMed Central  PubMed  Google Scholar 

  94. Cavalera M, Wang J, Frangogiannis NG (2014) Obesity, metabolic dysfunction, and cardiac fibrosis: pathophysiological pathways, molecular mechanisms, and therapeutic opportunities. Transl Res

    Google Scholar 

  95. Frangogiannis NG (2012) Biomarkers: hopes and challenges in the path from discovery to clinical practice. Transl Res 159:197–204.

    Article  PubMed Central  PubMed  Google Scholar 

  96. Christia P, Frangogiannis NG (2013) Targeting inflammatory pathways in myocardial infarction. Eur J Clin Invest 43:986–995.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  97. Rosker C, Salvarani N, Schmutz S, Grand T, Rohr S (2011) Abolishing myofibroblast arrhythmogeneicity by pharmacological ablation of alpha-smooth muscle actin containing stress fibers. Circ Res 109:1120–1131.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Dr Frangogiannis’ laboratory is supported by NIH grants R01 HL76246 and R01 HL85440.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nikolaos G. Frangogiannis MD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Saxena, A., Frangogiannis, N. (2015). Fibroblast Activation in the Infarcted Myocardium. In: Dixon, I., Wigle, J. (eds) Cardiac Fibrosis and Heart Failure: Cause or Effect?. Advances in Biochemistry in Health and Disease, vol 13. Springer, Cham. https://doi.org/10.1007/978-3-319-17437-2_2

Download citation

Publish with us

Policies and ethics