Skip to main content
Log in

MicroRNAs and Ultraconserved Genes as Diagnostic Markers and Therapeutic Targets in Cancer and Cardiovascular Diseases

  • Published:
Journal of Cardiovascular Translational Research Aims and scope Submit manuscript

Abstract

MicroRNAs (miRNAs), approximately 19–25 nucleotides in length, are posttranscriptional regulators of protein expression that target and inhibit translation of messenger (m) RNAs. Recent research on miRNAs has produced a plethora of new material on the role of miRNAs in disease. Deregulation or ablation of miRNA expression has led to major pathologies including heart disease and cancer. Signatures of differential miRNA expression have been uncovered for nearly every disease. Recent research has focused on exploitation of the selectivity of these signatures as markers of disease and for therapeutic applications. The significance of additional mechanisms of abnormal posttranscriptional regulation, such as ultraconserved genes (UCGs), has recently been recognized. This review focuses on the identification of aberrant posttranscriptional regulators (miRNAs and UCGs) in cancer and cardiovascular disease and addresses the applications of this work towards diagnosis and therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Bagga, S., Bracht, J., Hunter, S., Massirer, K., Holtz, J., Eachus, R., et al. (2005). Regulation by let-7 and lin-4 miRNAs results in target mRNA degradation. Cell, 122(4), 553–563.

    Article  PubMed  CAS  Google Scholar 

  2. Wang, Y., Liang, Y., & Lu, Q. (2008). MicroRNA epigenetic alterations: Predicting biomarkers and therapeutic targets in human diseases. Clinical Genetics, 74(4), 307–315.

    Article  PubMed  CAS  Google Scholar 

  3. Borchert, G. M., Lanier, W., & Davidson, B. L. (2006). RNA polymerase III transcribes human microRNAs. Nature Structural & Molecular Biology, 13(12), 1097–1101.

    Article  CAS  Google Scholar 

  4. Gregory, R. I., Yan, K. P., Amuthan, G., Chendrimada, T., Doratotaj, B., Cooch, N., et al. (2004). The Microprocessor complex mediates the genesis of microRNAs. Nature, 432(7014), 235–40.

    Article  PubMed  CAS  Google Scholar 

  5. Hutvágner, G., & Zamore, P. D. (2002). A microRNA in a multiple-turnover RNAi enzyme complex. Science, 297(5589), 2056–2060.

    Article  PubMed  CAS  Google Scholar 

  6. Bejerano, G., Pheasant, M., Makunin, I., Stephen, S., Kent, W. J., Mattick, J. S., et al. (2004). Ultraconserved elements in the human genome. Science, 304(5675), 1321–1325.

    Article  PubMed  CAS  Google Scholar 

  7. Mattick, J. S. (2009). The genetic signatures of noncoding RNAs. PLoS Genet, 5(4), e1000459.

    Article  PubMed  CAS  Google Scholar 

  8. Calin, G. A., Liu, C. G., Ferracin, M., Hyslop, T., Spizzo, R., Sevignani, C., et al. (2007). Ultraconserved regions encoding ncRNAs are altered in human leukemias and carcinomas. Cancer Cell, 12(3), 215–229.

    Article  PubMed  CAS  Google Scholar 

  9. Strong, K., Mathers, C., Leeder, S., & Beaglehole, R. (2005). Preventing chronic diseases: How many lives can we save? Lancet, 366(9496), 1578–1582.

    Article  PubMed  Google Scholar 

  10. Lloyd-Jones, D., Adams, R. J., Brown, T. M., Carnethon, M., Dai, S., De Simone, G., Ferguson, T. B., Ford, E., Furie, K., Gillespie, C., Go, A., Greenlund, K., Haase, N., Hailpern, S., Ho, P. M., Howard, V., Kissela, B., Kittner, S., Lackland, D., Lisabeth, L., Marelli, A., McDermott, M. M., Meigs, J., Mozaffarian, D., Mussolino, M., Nichol, G., Roger, V., Rosamond, W., Sacco, R, Sorlie, P., Stafford, R., Thom, T., Wasserthiel-Smoller, S., Wong, N. D., Wylie-Rosett, J., on behalf of the American Heart Association Statistics Committee and Stroke Statistics Subcommittee. (2009) Heart disease and stroke statistics—2010 update. A report from the American Heart Association. Circulation.

  11. Jemal, A., Siegel, R., Ward, E., Murray, T., Xu, J., & Thun, M. J. (2007). Cancer statistics, 2007. CA: A Cancer Journal for Clinicians, 57(1), 43–66.

    Article  Google Scholar 

  12. Chen, J. F., Murchison, E. P., Tang, R., Callis, T. E., Tatsuguchi, M., Deng, Z., et al. (2008). Targeted deletion of Dicer in the heart leads to dilated cardiomyopathy and heart failure. Proceedings of the National Academy of Sciences of the United States of America, 105(6), 2111–2116.

    Article  PubMed  Google Scholar 

  13. Zhao, Y., Ransom, J. F., Li, A., Vedantham, V., von Drehle, M., Muth, A. N., et al. (2007). Dysregulation of cardiogenesis, cardiac conduction, and cell cycle in mice lacking miRNA-1-2. Cell, 129(2), 303–317.

    Article  PubMed  CAS  Google Scholar 

  14. Thum, T., Galuppo, P., Wolf, C., Fiedler, J., Kneitz, S., van Laake, L. W., et al. (2007). MicroRNAs in the human heart: A clue to fetal gene reprogramming in heart failure. Circulation, 116(3), 258–267.

    Article  PubMed  CAS  Google Scholar 

  15. van Rooij, E., Sutherland, L. B., Liu, N., Williams, A. H., McAnally, J., Gerard, R. D., et al. (2006). A signature pattern of stress-responsive microRNAs that can evoke cardiac hypertrophy and heart failure. Proceedings of the National Academy of Sciences of the United States of America, 103(48), 18255–18260.

    Article  PubMed  CAS  Google Scholar 

  16. Hunter, J. J., & Chien, K. R. (1999). Signaling pathways for cardiac hypertrophy and failure. New England Journal of Medicine, 341(17), 1276–1283.

    Article  PubMed  CAS  Google Scholar 

  17. Sayed, D., Hong, C., Chen, I. Y., Lypowy, J., & Abdellatif, M. (2007). MicroRNAs play an essential role in the development of cardiac hypertrophy. Circulation Research, 100(3), 416–424.

    Article  PubMed  CAS  Google Scholar 

  18. Carè, A., Catalucci, D., Felicetti, F., Bonci, D., Addario, A., Gallo, P., et al. (2007). MicroRNA-133 controls cardiac hypertrophy. Nature Medicine, 13(5), 613–618.

    Article  PubMed  CAS  Google Scholar 

  19. Xu, C., Lu, Y., Pan, Z., Chu, W., Luo, X., Lin, H., et al. (2007). The muscle-specific microRNAs miR-1 and miR-133 produce opposing effects on apoptosis by targeting HSP60, HSP70 and caspase-9 in cardiomyocytes. Journal of Cell Science, 120(Pt 17), 3045–3052.

    Article  PubMed  CAS  Google Scholar 

  20. Xiao, J., Luo, X., Lin, H., Zhang, Y., Lu, Y., Wang, N., et al. (2007). MicroRNA miR-133 represses HERG K+channel expression contributing to QT prolongation in diabetic hearts. Journal of Biological Chemistry, 282(17), 12363–12367.

    Article  PubMed  CAS  Google Scholar 

  21. Chan, J. A., Krichevsky, A. M., & Kosik, K. S. (2005). MicroRNA-21 is an antiapoptotic factor in human glioblastoma cells. Cancer Research, 65(14), 6029–6033.

    Article  PubMed  CAS  Google Scholar 

  22. Si, M. L., Zhu, S., Wu, H., Lu, Z., Wu, F., & Mo, Y. Y. (2007). miR-21-mediated tumor growth. Oncogene, 26(19), 2799–2803.

    Article  PubMed  CAS  Google Scholar 

  23. Cheng, Y., Ji, R., Yue, J., Yang, J., Liu, X., Chen, H., et al. (2007). MicroRNAs are aberrantly expressed in hypertrophic heart: Do they play a role in cardiac hypertrophy? American Journal of Pathology, 170(6), 1831–1840.

    Article  PubMed  CAS  Google Scholar 

  24. Tatsuguchi, M., Seok, H. Y., Callis, T. E., Thomson, J. M., Chen, J. F., Newman, M., et al. (2007). Expression of microRNAs is dynamically regulated during cardiomyocyte hypertrophy. Journal of Molecular and Cellular Cardiology, 42(6), 1137–1141.

    Article  PubMed  CAS  Google Scholar 

  25. Thum, T., Gross, C., Fiedler, J., Fischer, T., Kissler, S., Bussen, M., et al. (2008). MicroRNA-21 contributes to myocardial disease by stimulating MAP kinase signalling in fibroblasts. Nature, 456(7224), 980–984.

    Article  PubMed  CAS  Google Scholar 

  26. Calin, G. A., & Croce, C. M. (2009). Chronic lymphocytic leukemia: Interplay between noncoding RNAs and protein-coding genes. Blood, 114(23), 4761–4770.

    Article  PubMed  CAS  Google Scholar 

  27. Liu, C. G., Spizzo, R., Calin, G. A., & Croce, C. M. (2008). Expression profiling of microRNA using oligo DNA arrays. Methods, 44(1), 22–30.

    Article  PubMed  CAS  Google Scholar 

  28. Volinia, S., Calin, G. A., Liu, C. G., Ambs, S., Cimmino, A., Petrocca, F., et al. (2006). A microRNA expression signature of human solid tumors defines cancer gene targets. Proceedings of the National Academy of Sciences of the United States of America, 103(7), 2257–2261.

    Article  PubMed  CAS  Google Scholar 

  29. Calin, G. A., & Croce, C. M. (2006). MicroRNA signatures in human cancers. Nature ReviewsCancer, 6(11), 857–866.

    Article  CAS  Google Scholar 

  30. Esquela-Kerscher, A., & Slack, F. J. (2006). Oncomirs-microRNAs with a role in cancer. Nature ReviewsCancer, 6(4), 259–269.

    Article  CAS  Google Scholar 

  31. Calin, G. A., Dumitru, C. D., Shimizu, M., Bichi, R., Zupo, S., Noch, E., et al. (2002). Frequent deletions and down-regulation of micro-RNA genes miR15 and miR16 at 13q14 in chronic lymphocytic leukemia. Proceedings of the National Academy of Sciences of the United States of America, 99(24), 15524–15529.

    Article  PubMed  CAS  Google Scholar 

  32. Aqeilan, R. I., Calin, G. A., & Croce, C. M. (2010). miR-15a and miR-16-1 in cancer: Discovery, function and future perspectives. Cell Death and Differentiation, 17(2), 215–220.

    Article  PubMed  CAS  Google Scholar 

  33. Nicoloso, M. S., Spizzo, R., Shimizu, M., Rossi, S., & Calin, G. A. (2009). MicroRNAs—The micro steering wheel of tumour metastases. Nature ReviewsCancer, 9(4), 293–302.

    Article  CAS  Google Scholar 

  34. Schetter, A. J., Leung, S. Y., Sohn, J. J., Zanetti, K. A., Bowman, E. D., Yanaihara, N., et al. (2008). MicroRNA expression profiles associated with prognosis and therapeutic outcome in colon adenocarcinoma. JAMA, 299(4), 425–436.

    Article  PubMed  CAS  Google Scholar 

  35. Reinhart, B. J., Slack, F. J., Basson, M., Pasquinelli, A. E., Bettinger, J. C., Rougvie, A. E., et al. (2000). The 21-nucleotide let-7 RNA regulates developmental timing in Caenorhabditis elegans. Nature, 403(6772), 901–906.

    Article  PubMed  CAS  Google Scholar 

  36. Takamizawa, J., Konishi, H., Yanagisawa, K., Tomida, S., Osada, H., Endoh, H., et al. (2004). Reduced expression of the let-7 microRNAs in human lung cancers in association with shortened postoperative survival. Cancer Research, 64(11), 3753–3756.

    Article  PubMed  CAS  Google Scholar 

  37. Johnson, S. M., Grosshans, H., Shingara, J., Byrom, M., Jarvis, R., Cheng, A., et al. (2005). RAS is regulated by the let-7 microRNA family. Cell, 120(5), 635–647.

    Article  PubMed  CAS  Google Scholar 

  38. Eccles, S. A., & Welch, D. R. (2007). Metastasis: Recent discoveries and novel treatment strategies. Lancet, 369(9574), 1742–1757.

    Article  PubMed  CAS  Google Scholar 

  39. Tavazoie, S. F., Alarcón, C., Oskarsson, T., Padua, D., Wang, Q., Bos, P. D., et al. (2008). Endogenous human microRNAs that suppress breast cancer metastasis. Nature, 451(7175), 147–152.

    Article  PubMed  CAS  Google Scholar 

  40. Wang, S., Aurora, A. B., Johnson, B. A., Qi, X., McAnally, J., Hill, J. A., et al. (2008). The endothelial-specific microRNA miR-126 governs vascular integrity and angiogenesis. Developments Cell, 15(2), 261–271.

    Article  CAS  Google Scholar 

  41. Wang, S., & Olson, E. N. (2009). AngiomiRs—Key regulators of angiogenesis. Current Opinion in Genetics and Development, 19(3), 205–211.

    Article  PubMed  CAS  Google Scholar 

  42. Fish, J. E., Santoro, M. M., Morton, S. U., Yu, S., Yeh, R. F., Wythe, J. D., et al. (2008). miR-126 regulates angiogenic signaling and vascular integrity. Developments Cell, 15(2), 272–284.

    Article  CAS  Google Scholar 

  43. Ullah, M. F., & Aatif, M. (2009). The footprints of cancer development: Cancer biomarkers. Cancer Treatment Reviews, 35(3), 193–200.

    Article  PubMed  Google Scholar 

  44. Lu, J., Getz, G., Miska, E. A., Alvarez-Saavedra, E., Lamb, J., Peck, D., et al. (2005). MicroRNA expression profiles classify human cancers. Nature, 435(7043), 834–838.

    Article  PubMed  CAS  Google Scholar 

  45. Rosenfeld, N., Aharonov, R., Meiri, E., Rosenwald, S., Spector, Y., Zepeniuk, M., et al. (2008). MicroRNAs accurately identify cancer tissue origin. Nature Biotechnology, 26(4), 462–469.

    Article  PubMed  CAS  Google Scholar 

  46. Mercer, T. R., Dinger, M. E., & Mattick, J. S. (2009). Long non-coding RNAs: Insights into functions. Nature Reviews Genetics, 10(3), 155–159.

    Article  PubMed  CAS  Google Scholar 

  47. Reis, E. M., Nakaya, H. I., Louro, R., Canavez, F. C., Flatschart, A. V., Almeida, G. T., et al. (2004). Antisense intronic non-coding RNA levels correlate to the degree of tumor differentiation in prostate cancer. Oncogene, 23(39), 6684–6692.

    Article  PubMed  CAS  Google Scholar 

  48. Calin, G. A., Ferracin, M., Cimmino, A., Di Leva, G., Shimizu, M., Wojcik, S. E., et al. (2005). A MicroRNA signature associated with prognosis and progression in chronic lymphocytic leukemia. New England Journal of Medicine, 353(17), 1793–1801. Erratum in: N Engl J Med355(5):533.

    Article  PubMed  CAS  Google Scholar 

  49. Girard, A., Sachidanandam, R., Hannon, G. J., & Carmell, M. A. (2006). A germline-specific class of small RNAs binds mammalian Piwi proteins. Nature, 442(7099), 199–202.

    PubMed  Google Scholar 

  50. Aravin, A., Gaidatzis, D., Pfeffer, S., Lagos-Quintana, M., Landgraf, P., Iovino, N., et al. (2006). A novel class of small RNAs bind to MILI protein in mouse testes. Nature, 442(7099), 203–207.

    PubMed  CAS  Google Scholar 

  51. Saito, K., Nishida, K. M., Mori, T., Kawamura, Y., Miyoshi, K., Nagami, T., et al. (2006). Specific association of Piwi with rasiRNAs derived from retrotransposon and heterochromatic regions in the Drosophila genome. Genes and Development, 20(16), 2214–2222.

    Article  PubMed  CAS  Google Scholar 

  52. O’Donnell, K. A., & Boeke, J. D. (2007). Mighty Piwis defend the germline against genome intruders. Cell, 129(1), 37–44.

    Article  PubMed  CAS  Google Scholar 

  53. Klattenhoff, C., & Theurkauf, W. (2008). Biogenesis and germline functions of piRNAs. Development, 135(1), 3–9.

    Article  PubMed  CAS  Google Scholar 

  54. Lau, N. C., Seto, A. G., Kim, J., Kuramochi-Miyagawa, S., Nakano, T., Bartel, D. P., et al. (2006). Characterization of the piRNA complex from rat testes. Science, 313(5785), 363–367.

    Article  PubMed  CAS  Google Scholar 

  55. Gunawardane, L. S., Saito, K., Nishida, K. M., Miyoshi, K., Kawamura, Y., Nagami, T., et al. (2007). A slicer-mediated mechanism for repeat-associated siRNA 5′ end formation in Drosophila. Science, 315(5818), 1587–1590.

    Article  PubMed  CAS  Google Scholar 

  56. Wurdinger, T., & Costa, F. F. (2007). Molecular therapy in the microRNA era. Pharmacogenomics Journal, 7(5), 297–304.

    Article  PubMed  CAS  Google Scholar 

  57. Aravin, A., & Tuschl, T. (2005). Identification and characterization of small RNAs involved in RNA silencing. FEBS Letters, 579(26), 5830–5840.

    Article  PubMed  CAS  Google Scholar 

  58. Rossi, S., Sevignani, C., Nnadi, S. C., Siracusa, L. D., & Calin, G. A. (2008). Cancer-associated genomic regions (CAGRs) and noncoding RNAs: Bioinformatics and therapeutic implications. Mammalian Genome, 19(7–8), 526–540.

    Article  PubMed  CAS  Google Scholar 

  59. Weiler, J., Hunziker, J., & Hall, J. (2006). Anti-miRNA oligonucleotides (AMOs): Ammunition to target miRNAs implicated in human disease? Gene Therapy, 13(6), 496–502.

    Article  PubMed  CAS  Google Scholar 

  60. Krützfeldt, J., Rajewsky, N., Braich, R., Rajeev, K. G., Tuschl, T., Manoharan, M., et al. (2005). Silencing of microRNAs in vivo with ‘antagomirs’. Nature, 438(7068), 685–689.

    Article  PubMed  CAS  Google Scholar 

  61. Martinez, J., Patkaniowska, A., Urlaub, H., Lührmann, R., & Tuschl, T. (2002). Single-stranded antisense siRNAs guide target RNA cleavage in RNAi. Cell, 110(5), 563–574.

    Article  PubMed  CAS  Google Scholar 

  62. Cimmino, A., Calin, G. A., Fabbri, M., Iorio, M. V., Ferracin, M., Shimizu, M., et al. (2005). miR-15 and miR-16 induce apoptosis by targeting BCL2. Proceedings of the National Academy of Sciences of the United States of America, 102(39), 13944–13949.

    Article  PubMed  CAS  Google Scholar 

  63. Calin, G. A., Cimmino, A., Fabbri, M., Ferracin, M., Wojcik, S. E., Shimizu, M., et al. (2008). miR-15a and miR-16-1 cluster functions in human leukemia. Proceedings of the National Academy of Sciences of the United States of America, 105(13), 5166–5171.

    Article  PubMed  Google Scholar 

  64. Weidhaas, J. B., Babar, I., Nallur, S. M., Trang, P., Roush, S., Boehm, M., et al. (2007). MicroRNAs as potential agents to alter resistance to cytotoxic anticancer therapy. Cancer Research, 67(23), 11111–11116.

    Article  PubMed  CAS  Google Scholar 

  65. Duisters, R. F., Tijsen, A. J., Schroen, B., Leenders, J. J., Lentink, V., van der Made, I., et al. (2009). miR-133 and miR-30 regulate connective tissue growth factor: Implications for a role of microRNAs in myocardial matrix remodeling. Circulation Research, 104(2), 170–178. 6p following 178.

    Article  PubMed  CAS  Google Scholar 

  66. van Rooij, E., Sutherland, L. B., Qi, X., Richardson, J. A., Hill, J., & Olson, E. N. (2007). Control of stress-dependent cardiac growth and gene expression by a microRNA. Science, 316(5824), 575–579.

    Article  PubMed  CAS  Google Scholar 

  67. Meng, F., Henson, R., Wehbe-Janek, H., Ghoshal, K., Jacob, S. T., & Patel, T. (2007). MicroRNA-21 regulates expression of the PTEN tumor suppressor gene in human hepatocellular cancer. Gastroenterology, 133(2), 647–658.

    Article  PubMed  CAS  Google Scholar 

  68. Asangani, I. A., Rasheed, S. A., Nikolova, D. A., Leupold, J. H., Colburn, N. H., Post, S., et al. (2008). MicroRNA-21 (miR-21) post-transcriptionally downregulates tumor suppressor Pdcd4 and stimulates invasion, intravasation and metastasis in colorectal cancer. Oncogene, 27(15), 2128–2136.

    Article  PubMed  CAS  Google Scholar 

  69. Zhu, S., Si, M. L., Wu, H., & Mo, Y. Y. (2007). MicroRNA-21 targets the tumor suppressor gene tropomyosin 1 (TPM1). Journal of Biological Chemistry, 282(19), 14328–14336.

    Article  PubMed  CAS  Google Scholar 

  70. Iorio, M. V., Ferracin, M., Liu, C. G., Veronese, A., Spizzo, R., Sabbioni, S., et al. (2005). MicroRNA gene expression deregulation in human breast cancer. Cancer Research, 65(16), 7065–7070.

    Article  PubMed  CAS  Google Scholar 

  71. Gironella, M., Seux, M., Xie, M. J., Cano, C., Tomasini, R., Gommeaux, J., et al. (2007). Tumor protein 53-induced nuclear protein 1 expression is repressed by miR-155, and its restoration inhibits pancreatic tumor development. Proceedings of the National Academy of Sciences of the United States of America, 104(41), 16170–16175.

    Article  PubMed  Google Scholar 

  72. Harris, T. A., Yamakuchi, M., Ferlito, M., Mendell, J. T., & Lowenstein, C. J. (2008). MicroRNA-126 regulates endothelial expression of vascular cell adhesion molecule 1. Proceedings of the National Academy of Sciences of the United States of America, 105(5), 1516–1521.

    Article  PubMed  Google Scholar 

  73. Ma, L., Teruya-Feldstein, J., & Weinberg, R. A. (2007). Tumour invasion and metastasis initiated by microRNA-10b in breast cancer. Nature, 449(7163), 682–688.

    Article  PubMed  CAS  Google Scholar 

  74. He, L., Thomson, J. M., Hemann, M. T., Hernando-Monge, E., Mu, D., Goodson, S., et al. (2005). A microRNA polycistron as a potential human oncogene. Nature, 435(7043), 828–833.

    Article  PubMed  CAS  Google Scholar 

  75. Dews, M., Homayouni, A., Yu, D., Murphy, D., Sevignani, C., Wentzel, E., et al. (2006). Augmentation of tumor angiogenesis by a Myc-activated microRNA cluster. Nature Genetics, 38(9), 1060–1065.

    Article  PubMed  CAS  Google Scholar 

  76. Bonauer, A., Carmona, G., Iwasaki, M., Mione, M., Koyanagi, M., Fischer, A., et al. (2009). MicroRNA-92a controls angiogenesis and functional recovery of ischemic tissues in mice. Science, 324(5935), 1710–1713.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

G.A.C. is supported as a Fellow at The University of Texas M. D. Anderson Research Trust, as a Fellow of The University of Texas System Regents Research Scholar, and by the Ladjevardian Regents Research Scholar Fund. Work in Dr. Calin’s laboratory is supported in part by an NIH, DOD, a Breast Cancer SPORE Developmental Research Award, an Ovarian Cancer SPORE Developmental Research Award, a CTT/3I-TD grant and by 2009 Seena Magowitz-Pancreatic Cancer Action Network-AACR Pilot Grant. W.A. and R.P. receive support from the Gillson-Longenbaugh Foundation, the Marcus Foundation, DOD, NIH, and NCI.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to George A. Calin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Edwards, J.K., Pasqualini, R., Arap, W. et al. MicroRNAs and Ultraconserved Genes as Diagnostic Markers and Therapeutic Targets in Cancer and Cardiovascular Diseases. J. of Cardiovasc. Trans. Res. 3, 271–279 (2010). https://doi.org/10.1007/s12265-010-9179-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12265-010-9179-5

Keywords

Navigation