Skip to main content

Advertisement

Log in

Cancer-associated genomic regions (CAGRs) and noncoding RNAs: bioinformatics and therapeutic implications

  • Published:
Mammalian Genome Aims and scope Submit manuscript

Abstract

MicroRNAs (miRNAs) are small noncoding RNAs (ncRNAs, RNAs that do not code for proteins) that regulate the expression of target genes at the posttranscriptional or posttranslational level. Many miRNAs have conserved sequences between distantly related organisms, suggesting that these molecules participate in essential developmental and physiologic processes. miRNAs can act as tumor suppressor genes or oncogenes in human cancers. Mutations, deletions, or amplifications have been found in human cancers and shown to alter expression levels of mature and/or precursor miRNA transcripts. Moreover, a large fraction of genomic ultraconserved regions (UCRs) encode a particular set of ncRNAs whose expression is altered in human cancers. Both miRNAs and UCRs are frequently located at fragile sites and genomic regions affected in various cancers, named cancer-associated genomic regions (CAGRs). Bioinformatics studies are emerging as important tools to identify associations and/or correlations between miRNAs/ncRNAs and CAGRs. ncRNA profiling has allowed the identification of specific signatures associated with diagnosis, prognosis, and response to treatment of human tumors. Several abnormalities could contribute to the alteration of miRNA expression profiles in each kind of tumor and in each kind of tissue. This review is focused on the miRNAs and ncRNAs as genes affecting cancer risk, and we provided an updated catalog of miRNAs and UCRs located at fragile sites or at cancer susceptibility loci. These types of studies are the first step toward discoveries leading to novel approaches for cancer therapies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Akagi K, Suzuki T, Stephens RM, Jenkins NA, Copeland NG (2004) RTCGD: retroviral tagged cancer gene database. Nucleic Acids Res 32:D523–D527

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ambros V (2004) The functions of animal microRNAs. Nature 431:350–355

    CAS  Google Scholar 

  • Barbarotto E, Schmittgen TD, Calin GA (2008) MicroRNAs and cancer: profile, profile, profile. Int J Cancer 122:969–977

    CAS  PubMed  Google Scholar 

  • Baskerville S, Bartel DP (2005) Microarray profiling of microRNAs reveals frequent coexpression with neighboring miRNAs and host genes. RNA 11:241–247

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bejerano G, Pheasant M, Makunin I, Stephen S, Kent WJ et al (2004) Ultraconserved elements in the human genome. Science 304:1321–1325

    CAS  PubMed  Google Scholar 

  • Bushman F, Lewinski M, Ciuffi A, Barr S, Leipzig J et al (2005) Genome-wide analysis of retroviral DNA integration. Nat Rev Microbiol 3:848–858

    CAS  PubMed  Google Scholar 

  • Caldas C, Brenton JD (2005) Sizing up miRNAs as cancer genes. Nat Med 11:712–714

    CAS  PubMed  Google Scholar 

  • Calin G (1994) Oncogenes and tumor suppressor genes: two different looks of the same gene? Oncol Rep 1:987–991

    CAS  PubMed  Google Scholar 

  • Calin GA, Croce CM (2006a) MicroRNA-cancer connection: the beginning of a new tale. Cancer Res 66:7390–7394

    CAS  PubMed  Google Scholar 

  • Calin GA, Croce CM (2006b) MicroRNAs and chromosomal abnormalities in cancer cells. Oncogene 25:6202–6210

    CAS  PubMed  Google Scholar 

  • Calin GA, Croce CM (2007) Investigation of microRNA alterations in leukemias and lymphomas. Methods Enzymol 427:191–213

    Google Scholar 

  • Calin GA, Sevignani C, Dumitru CD, Hyslop T, Noch E et al (2004) Human microRNA genes are frequently located at fragile sites and genomic regions involved in cancers. Proc Natl Acad Sci USA 101:2999–3004

    CAS  PubMed  PubMed Central  Google Scholar 

  • Calin GA, Ferracin M, Cimmino A, Di Leva G, Shimizu M et al (2005) A microRNA signature associated with prognosis and progression in chronic lymphocytic leukemia. N Engl J Med 353:1793–1801

    CAS  PubMed  Google Scholar 

  • Calin GA, Liu CG, Ferracin M, Hyslop T, Spizzo R et al (2007) Ultraconserved regions encoding ncRNAs are altered in human leukemias and carcinomas. Cancer Cell 12:215–229

    CAS  PubMed  Google Scholar 

  • Calin GA, Cimmino A, Fabbri M, Ferracin M, Wojcik SE et al (2008) MiR-15a and miR-16-1 cluster functions in human leukemia. Proc Natl Acad Sci USA 105:5166–5171

    CAS  PubMed  PubMed Central  Google Scholar 

  • Carmell MA, Xuan Z, Zhang MQ, Hannon GJ (2002) The Argonaute family: tentacles that reach into RNAi, developmental control, stem cell maintenance, and tumorigenesis. Genes Dev 16:2733–2742

    CAS  PubMed  Google Scholar 

  • Cillo C, Faiella A, Cantile M, Boncinelli E (1999) Homeobox genes and cancer. Exp Cell Res 248:1–9

    CAS  PubMed  Google Scholar 

  • Chan JA, Krichevsky AM, Kosik KS (2005) MicroRNA-21 is an antiapoptotic factor in human glioblastoma cells. Cancer Res 65:6029–6033

    CAS  PubMed  Google Scholar 

  • Cimmino A, Calin GA, Fabbri M, Iorio MV, Ferracin M et al (2005) miR-15 and miR-16 induce apoptosis by targeting BCL2. Proc Natl Acad Sci USA 102:13944–13949

    CAS  PubMed  PubMed Central  Google Scholar 

  • Costa FF (2005) Non-coding RNAs: new players in eukaryotic biology. Gene 357:83–94

    CAS  PubMed  Google Scholar 

  • Croce CM (2008) Oncogenes and cancer. N Engl J Med 358:502–511

    CAS  PubMed  Google Scholar 

  • Croce CM, Calin GA (2005) miRNAs, cancer, and stem cell division. Cell 122:6–7

    CAS  PubMed  Google Scholar 

  • Demant P (2003) Cancer susceptibility in the mouse: genetics, biology and implications for human cancer. Nat Rev Genet 4:721–734

    CAS  PubMed  Google Scholar 

  • Denli AM, Tops BB, Plasterk RH, Ketting RF, Hannon GJ (2004) Processing of primary microRNAs by the Microprocessor complex. Nature 432:231–235

    CAS  PubMed  Google Scholar 

  • Dickins RA, Hemann MT, Zilfou JT, Simpson DR, Ibarra I et al (2005) Probing tumor phenotypes using stable and regulated synthetic microRNA precursors. Nat Genet 37:1289–1295

    CAS  PubMed  Google Scholar 

  • Duursma AM, Kedde M, Schrier M, le Sage C, Agami R (2008) miR-148 targets human DNMT3b protein coding region. RNA 14:872–877

    CAS  PubMed  PubMed Central  Google Scholar 

  • Esquela-Kerscher A, Slack FJ (2006) Oncomirs—microRNAs with a role in cancer. Nat Rev Cancer 6:259–269

    CAS  PubMed  Google Scholar 

  • Gaur A, Jewell DA, Liang Y, Ridzon D, Moore JH et al (2007) Characterization of microRNA expression levels and their biological correlates in human cancer cell lines. Cancer Res 67:2456–2468

    CAS  PubMed  Google Scholar 

  • Gregory RI, Shiekhattar R (2005) MicroRNA biogenesis and cancer. Cancer Res 65:3509–3512

    CAS  PubMed  Google Scholar 

  • Gregory RI, Yan KP, Amuthan G, Chendrimada T, Doratotaj B et al (2004) The Microprocessor complex mediates the genesis of microRNAs. Nature 432:235–240

    CAS  PubMed  Google Scholar 

  • Greshock J, Naylor TL, Margolin A, Diskin S, Cleaver SH et al (2004) 1-Mb resolution array-based comparative genomic hybridization using a BAC clone set optimized for cancer gene analysis. Genome Res 14:179–187

    CAS  PubMed  PubMed Central  Google Scholar 

  • Griffiths-Jones S (2004) The microRNA Registry. Nucleic Acids Res 32(Database issue):D109–D111

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hammond SM, Boettcher S, Caudy AA, Kobayashi R, Hannon GJ (2001) Argonaute2, a link between genetic and biochemical analyses of RNAi. Science 293:1146–1150

    CAS  PubMed  Google Scholar 

  • He L, Thomson JM, Hemann MT, Hernando-Monge E, Mu D et al (2005) A microRNA polycistron as a potential human oncogene. Nature 435:828–833

    CAS  PubMed  PubMed Central  Google Scholar 

  • He L, He X, Lim LP, de Stanchina E, Xuan Z et al (2007) A microRNA component of the p53 tumour suppressor network. Nature 447:1130–1134

    CAS  PubMed  PubMed Central  Google Scholar 

  • Huppi K, Volfovsky N, Mackiewicz M, Runfola T, Jones TL et al (2007) MicroRNAs and genomic instability Semin Cancer Biol 17:65–73

    CAS  PubMed  Google Scholar 

  • Hutvagner G, Zamore PD (2002) A microRNA in a multiple-turnover RNAi enzyme complex. Science 297:2056–2060

    CAS  PubMed  Google Scholar 

  • Iorio MV, Ferracin M, Liu CG, Veronese A, Spizzo R et al (2005) MicroRNA gene expression deregulation in human breast cancer. Cancer Res 65:7065–7070

    CAS  PubMed  Google Scholar 

  • Iwai N, Naraba H (2005) Polymorphisms in human pre-miRNAs. Biochem Biophys Res Commun 331:1439–1444

    CAS  PubMed  Google Scholar 

  • Iwama H, Masaki T, Kuriyama S (2007) Abundance of microRNA target motifs in the 3′-UTRs of 20527 human genes. FEBS Lett 581:1805–1810

    CAS  PubMed  Google Scholar 

  • Johnson CD, Esquela-Kerscher A, Stefani G, Byrom M, Kelnar K et al (2007) The let-7 microRNA represses cell proliferation pathways in human cells. Cancer Res 67:7713–7722

    CAS  PubMed  Google Scholar 

  • Lu J, Getz G, Miska EA, Alvarez-Saavedra E, Lamb J et al (2005) MicroRNA expression profiles classify human cancers. Nature 435:834–838

    CAS  PubMed  Google Scholar 

  • Lum AM, Wang BB, Li L, Channa N, Bartha G et al (2007) Retroviral activation of the miR-106a microRNA cistron in T lymphoma. Retrovirology 4:5

    PubMed  PubMed Central  Google Scholar 

  • Lund E, Guttinger S, Calado A, Dahlberg JE, Kutay U (2004) Nuclear export of microRNA precursors. Science 303:95–98

    CAS  PubMed  Google Scholar 

  • Makunin IV, Pheasant M, Simons C, Mattick JS (2007) Orthologous microRNA genes are located in cancer-associated genomic regions in human and mouse. PLoS ONE 2(11):e1133

    PubMed  PubMed Central  Google Scholar 

  • McManus MT (2003) MicroRNAs and cancer. Semin Cancer Biol 13:253–258

    CAS  PubMed  Google Scholar 

  • Mendell JT (2005) MicroRNAs: critical regulators of development, cellular physiology and malignancy. Cell Cycle 4:1179–1184

    CAS  PubMed  Google Scholar 

  • Meng F, Henson R, Wehbe-Janek H, Ghoshal K, Jacob ST et al (2007) MicroRNA-21 regulates expression of the PTEN tumor suppressor gene in human hepatocellular cancer. Gastroenterology 133:647–658

    CAS  PubMed  Google Scholar 

  • Miranda KC, Huynh T, Tay Y, Ang YS, Tam WL et al (2006) A pattern-based method for the identification of microRNA binding sites and their corresponding heteroduplexes. Cell 126:1203–1217

    CAS  PubMed  Google Scholar 

  • Mourelatos Z, Dostie J, Paushkin S, Sharma A, Charroux B et al (2002) miRNPs: a novel class of ribonucleoproteins containing numerous microRNAs. Genes Dev 16:720–728

    CAS  PubMed  PubMed Central  Google Scholar 

  • O’Donnell KA, Wentzel EA, Zeller KI, Dang CV, Mendell JT (2005) c-Myc regulated microRNAs modulate E2F1 expression. Nature 435:839–843

    PubMed  Google Scholar 

  • Olshen AB, Venkatraman ES, Lucito R, Wigler M (2004) Circular binary segmentation for the analysis of array-based DNA copy number data. Biostatistics 5:557–572

    PubMed  Google Scholar 

  • Owens BM, Hawley RG (2002) HOX and non-HOX homeobox genes in leukemic hematopoiesis. Stem Cells 20:364–379

    CAS  PubMed  Google Scholar 

  • Perwez Hussain S, Harris CC (2007) Inflammation and cancer: an ancient link with novel potentials. Int J Cancer 121:2373–2380

    PubMed  Google Scholar 

  • Pollard SL, Holland PWH (2000) Evidence for 14 homeobox gene clusters in human genome ancestry. Curr Biol 10:1059–1062

    CAS  PubMed  Google Scholar 

  • Sasaki T, Shiohama A, Minoshima S, Shimizu N (2003) Identification of eight members of the Argonaute family in the human genome. Genomics 82:323–330

    CAS  PubMed  Google Scholar 

  • Scott GK, Mattie MD, Berger CE, Benz SC, Benz CC (2006) Rapid alteration of microRNA levels by histone deacetylase inhibition. Cancer Res 66:1277–1281

    CAS  PubMed  Google Scholar 

  • Sevignani C, Calin GA, Siracusa LD, Croce CM (2006) Mammalian microRNAs: a small world for fine-tuning gene expression. Mamm Genome 17:189–202

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sevignani C, Calin GA, Nnadi SC, Shimizu M, Davuluri RV et al (2007) MicroRNA genes are frequently located near mouse cancer susceptibility loci. Proc Natl Acad Sci USA 104:8017–8022

    CAS  PubMed  PubMed Central  Google Scholar 

  • Siepel A, Bejerano G, Pedersen JS, Hinrichs AS, Hou M et al (2005) Evolutionarily conserved elements in vertebrate, insect, worm, and yeast genomes. Genome Res 15:1034–1050

    CAS  PubMed  PubMed Central  Google Scholar 

  • Simons C, Pheasant M, Makunin IV, Mattick JS (2006) Transposon-free regions in mammalian genomes. Genome Res 16:164–172

    CAS  PubMed  PubMed Central  Google Scholar 

  • Slape C, Hartung H, Lin YW, Bies J, Wolff L et al (2007) Retroviral insertional mutagenesis identifies genes that collaborate with NUP98-HOXD13 during leukemic transformation. Cancer Res 67:5148–5155

    CAS  PubMed  PubMed Central  Google Scholar 

  • Suzuki R, Shimodaira H (2006) Pvlust: an R package for assessing the uncertainty in hierarchical clustering. Bioinformatics 22:1540–1542

    CAS  PubMed  Google Scholar 

  • Suzuki T, Shen H, Akagi K, Morse HC, Malley JD et al (2002) New genes involved in cancer identified by retroviral tagging. Nat Genet 32:166–174

    CAS  PubMed  Google Scholar 

  • Volinia S, Calin GA, Liu CG, Ambs S, Cimmino A et al (2006) A microRNA expression signature of human solid tumors defines cancer gene targets. Proc Natl Acad Sci USA 103:2257–2261

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wang CL, Wang BB, Bartha G, Li L, Channa N et al (2006) Activation of an oncogenic microRNA cistron by provirus integration. Proc Natl Acad Sci USA 103:18680–18684

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wigle JT, Eisenstat DD (2008) Homeobox genes in vertebrate forebrain development and disease. Clin Genet 73:212–226

    CAS  PubMed  Google Scholar 

  • Yanaihara N, Caplen N, Bowman E, Seike M, Kumamaoto K et al (2006) Unique microRNA molecular profiles in lung cancer diagnosis and prognosis. Cancer Cell 9:189–198

    CAS  PubMed  Google Scholar 

  • Yoon S, De Micheli G (2005) Prediction of regulatory modules comprising microRNAs and target genes. Bioinformatics 21(Suppl 2):ii93–ii100

    CAS  PubMed  Google Scholar 

  • Zhang L, Huang J, Yang N, Greshock J, Megraw MS et al (2006) microRNAs exhibit high frequency genomic alterations in human cancer. Proc Natl Acad Sci USA 103:9136–9141

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

Dr. Calin was supported by the CLL Global Research Foundation, in part by the Fellow of The University of Texas M.D. Anderson Research Trust, and by the Ladjevardian Regent Research Scholar Fund. Dr. Siracusa was supported by NCI grants RO1 CA86560 and CA120243.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Linda D. Siracusa or George A. Calin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rossi, S., Sevignani, C., Nnadi, S.C. et al. Cancer-associated genomic regions (CAGRs) and noncoding RNAs: bioinformatics and therapeutic implications. Mamm Genome 19, 526–540 (2008). https://doi.org/10.1007/s00335-008-9119-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00335-008-9119-8

Keywords

Navigation